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Abstract

Future predictions on sequence data (e.g., videos
or audios) require the algorithms to capture non-
Markovian and compositional properties of high-
level semantics. Context-free grammars are nat-
ural choices to capture such properties, but tradi-
tional grammar parsers (e.g., Earley parser) only
take symbolic sentences as inputs. In this paper,
we generalize the Earley parser to parse sequence
data which is neither segmented nor labeled. This
generalized Earley parser integrates a grammar
parser with a classifier to find the optimal seg-
mentation and labels, and makes fop-down future
predictions. Experiments show that our method
significantly outperforms other approaches for fu-
ture human activity prediction.

1. Introduction

We consider the task of labeling unsegmented sequence data
and predicting future labels. This is a ubiquitous problem
with important applications in many perceptual tasks, e.g.,
recognition and anticipation of human activities or speech.
A generic modeling approach is key for intelligent agents to
perform future-aware tasks (e.g., assistive activities).

Such tasks often exhibit non-Markovian and compositional
properties, which should be captured by a top-down predic-
tion algorithm. Consider the video sequence in Figure 1,
human observers recognize the first two actions and predict
the most likely future action based on the entire history.
Context-free grammars are natural choices to model such
reasoning processes, and it is one step closer to Turing ma-
chines than Markov models (e.g., Hidden Markov Models)
in the Chomsky hierarchy.

However, it is not clear how to directly use symbolic gram-
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Figure 1. The input of the generalized Earley parser is a matrix of
probabilities of each label for each frame, given by an arbitrary
classifier. The parser segments and labels the sequence data into
a label sentence in the language of a given grammar. Future
predictions are then made based on the grammar.

mars to parse and label sequence data. Traditional grammar
parsers take symbolic sentences as inputs instead of noisy
sequence data like videos or audios. The data has to be i)
segmented and ii) labeled to apply existing grammar parsers
to. One naive solution is to first segment and label the data
using a classifier and thus generating a label sentence. Then
grammar parsers can be applied on top of it for prediction.
But this is apparently non-optimal, since the grammar rules
are not considered in the classification process. It may not
even be possible to parse this label sentence, because they
are very often grammatically incorrect.

In this paper, we design a grammar-based parsing algorithm
that directly operates on sequence input data, which goes
beyond the scope of symbolic string inputs. Specifically,
we propose a generalized Earley parser based on the Earley
parser (Earley, 1970). The algorithm finds the optimal seg-
mentation and label sentence according to both a symbolic
grammar and a classifier output of probabilities of labels for
each frame as shown in Figure 1. Optimality here means
maximizing the probability of the label sentence according
to the classifier output while being grammatically correct.

The difficulty of achieving this optimality lies in the joint
optimization of both the grammar structure and the parsing
likelihood of the output label sentence. For example, an
expectation-maximization-type algorithm will not work well
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since 1) there is no guarantee for optimality, and ii) any
grammatically incorrect sentence has a grammar prior of
probability 0. The algorithm can easily get stuck in local
minimums and fail to find a grammatically correct solution.

The core idea of our algorithm is to directly and efficiently
search for the optimal label sentence in the language defined
by the grammar. The constraint of the search space ensures
that the sentence is grammatically correct. Specifically, a
heuristic search is performed on the prefix tree expanded
according to the grammar, where the path from the root to
a node represents a partial sentence (prefix). By carefully
defining the heuristic as a prefix probability computed based
on the classifier output, we can efficiently search through
the tree to find the optimal label sentence.

The generalized Earley parser has four major advantages.
i) The inference process highly integrates a high-level gram-
mar with an underlying classifier; the grammar gives guid-
ance for segmenting and labeling the sequence data. ii) It
can be applied to any classifier outputs. iii) It generates a
grammar parse tree for data sequence that is highly explain-
able. iv) It is principled and generic, as it applies to most
sequence data parsing and prediction problems.

We evaluate the proposed approach on two datasets of hu-
man activities in the computer vision domain. The first
dataset CAD-120 (Koppula et al., 2013) consists of daily
activities and most activity prediction methods are based
on this dataset. Comparisons show that our method sig-
nificantly outperforms state-of-the-art methods on future
activity prediction. The second dataset Watch-n-Patch (Wu
et al., 2015) is designed for “action patching”, which in-
cludes daily activities that have action forgotten by people.
Experiments on the second dataset show the robustness of
our method on noisy data. Both experiments show that the
generalized Earley parser performs particularly well on pre-
diction tasks, primarily due to its non-Markovian property.

This paper makes three major contributions.

e We design a parsing algorithm for symbolic context-free
grammars. It directly operates on sequence data to obtain
the optimal segmentation and labels.

e We propose a prediction algorithm that naturally integrates
with this parsing algorithm.

e We formulate an objective for future prediction for both
grammar induction and classifier training. The generalized
Earley parser serves as a concrete example for combining
symbolic reasoning methods and connectionist approaches.

2. Background: Context-Free Grammars

In formal language theory, a context-free grammar is a type
of formal grammar, which contains a set of production rules
that describe all possible sentences in a given formal lan-
guage. A context-free grammar G in Chomsky Normal

Sample grammar: v — R; R — R+ R; R — “07|“1”
Input string: 0 + 1
State: | state # | rule | origin | comment |

5(0)

1) | vy—-R 0 | start rule

2| R—>-R+R | 0| predict: (1)

3 | R—-0 0 | predict: (1)

4 | R—-1 0 | predict: (1)

S(1)

() | R—0- 0 | scan: S(0)(3)

2) | R— R-+R | 0 | complete: (1) and S(0)(2)
3| v— R 0 | complete: (2) and S(0)(1)
5(2)

()| R=R+-R | 0| scan: S(1)(2)

2 | R—>-R+R | 2| predict: (1)

3 | R—-0 2 | predict: (1)

4 | R—-1 2 | predict: (1)

5(3)

| R—1. 2 | scan: S(2)(4)

(2) | R R+ R- | 0| complete: (1) and S(2)(1)
3 | R—»R-+R | 0| complete: (1) and S(2)(2)
4 | v—R- 0 | complete: (2) and S(0)(1)

Figure 2. An example of the original Earley parser.

Form is defined by a 4-tuple G = (V, X, R, v) where

1. V is a finite set of non-terminal symbols that can be
replaced by/expanded to a sequence of symbols.

2. X is a finite set of terminal symbols that represent actual
words in a language, which cannot be further expanded.

3. Ris a finite set of production rules describing the replace-
ment of symbols, typically of the form A — BC or A — «
for A,B,C e Vanda € X.

4. v € V is the start symbol (root of the grammar).

Given a formal grammar, parsing is the process of analyzing
a string of symbols, conforming to the production rules
and generating a parse tree. A parse tree represents the
syntactic structure of a string according to some context-
free grammar. The root node of the tree is the grammar
root. Other non-leaf nodes correspond to non-terminals in
the grammar, expanded according to grammar production
rules. The leaf nodes are terminal symbols. All the leaf
nodes together form a sentence.

The above definition can be augmented by assigning a proba-
bility to each production rule, thus becoming a probabilistic
context-free grammar. The probability of a parse tree is the
product of the production rules that derive the parse tree.

3. Earley Parser

In this section, we review the original Earley parser (Earley,
1970) and introduce the basic concepts. Earley parser is an
algorithm for parsing sentences of a given context-free lan-
guage. In the following descriptions, «, /3, and 7y represent
any string of terminals/nonterminals (including the empty
string €), A and B represent single nonterminals, and a rep-
resents a terminal symbol. We adopt Earley’s dot notation:
for production of form A — «/3, the notation A — « - 3
means « has been parsed and 3 is expected.
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Input position 7 is defined as the position after accepting
the nth token, and input position O is the position prior to
input. At each input position m, the parser generates a state
set S(m). Each state is a tuple (A — « - 3,14), consisting of

e The production currently being matched (A — af3).

e The dot: the current position in that production.

e The position ¢ in the input at which the matching of this
production began: the position of origin.

Seeded with S(0) containing only the top-level rule, the
parser then repeatedly executes three operations: prediction,
scanning and completion:

e Prediction: for every state in S(m) of the form (A — o -
Bg, 1), where i is the origin position as above, add (B —
-y, m) to S(m) for every production in the grammar with
B on the left-hand side (i.e., B — 7).

e Scanning: if a is the next symbol in the input stream, for
every state in S(m) of the form (A — « - af3,1), add
(A— aa-B,i)toS(m+1).

e Completion: for every state in S(m) of the form (A —
~+,4), find states in S(j) of the form (B — a - Af3,1)
and add (B — oA - 8,i) to S(m).

In this process, duplicate states are not added to the state set.
These three operations are repeated until no new states can
be added to the set. The Earley parser executes in O(n?) for
unambiguous grammars regarding the string length n, and
O(n) for almost all LR(k) grammars. A simple example is
demonstrated in Figure 2.

4. Generalized Earley Parser

In this section, we introduce the proposed algorithm. Instead
of taking symbolic sentences as input, we aim to design an
algorithm that can parse raw sequence data x of length
T (e.g., videos or audios) into a sentence [ of labels (e.g.,
actions or words) of length |I| < T, where each label k €
{0,1,---, K} corresponds to a segment of a sequence. To
achieve that, a classifier (e.g., a neural network) is first
applied to each sequence x to get a T' x K probability
matrix ¥ (e.g., softmax activations of the neural network),
with y¥ representing the probability of frame ¢ being labeled
as k. The proposed generalized Earley parser takes y as
input and outputs the sentence [* that best explains the data
according to a grammar G of Chomsky normal form.

The core idea is to use the original Earley parser to help con-
struct a prefix tree according to the grammar as illustrated in
Figure 3. A prefix tree is composed of terminal symbols and
terminations that represent ends of sentences. The root node
of the tree is the “empty” symbol. The path from the root
to any node in the tree represents a partial sentence (prefix).
For each prefix, we can compute the probability that the
best label sentence starts with this prefix. This probability

Sample grammar:

¥y — R

R— R+ R

R — “017 ‘ £L177

Input (classifier output):

frame | “0” | “1” | “+”

0 0.8 | 0.1 | 0.1
1 0.8 | 0.1 | 0.1
2 0.1 | 0.1 | 0.8
3 0.1 | 0.8 | 0.1
4 0.1 | 0.8 | 0.1

Figure 3. Prefix search according to grammar. A classifier is ap-
plied to a 5-frame signal and outputs a probability matrix (bot-
tom right) as the input to our algorithm. The proposed algorithm
expands a grammar prefix tree (left), where “‘e” represents termi-
nation. It finally outputs the best label “0 + 1” with probability
0.43. The probabilities of children nodes do not sum to 1 since the

grammatically incorrect nodes are eliminated from the search.

is used as a heuristic to search for the best label sentence in
the prefix tree: the prefix probabilities prioritize the nodes
to be expanded in the prefix tree. The parser finds the best
solution when it expands a termination node in the tree. It
then returns the current prefix string as the best solution.

This heuristic search is realized by generalizing the Earley
parser. Specifically, the scan operation in the Earley parser
essentially expands a new node in the grammar prefix tree.
For each prefix [, we can compute p({|xo.7) and p(l...|zo.7)
based on y, where p(l|zq.7) is the probability of [ being
the best label, and p(l...|zq.7) is the probability of [ being
the prefix of the best label of x.7. The formulations for
p(l|zo.r) and p(l...|zq.7) are derived in Section 4.1.

We now describe the details. Each scan operation will create
a new set S(m,n) € S(m), where m is the length of the
scanned string, n is the total number of the terminals that
have been scanned at position m. This can be thought of as
creating a new leaf node in the prefix tree, and S(m) is the
set of all created nodes at level m. A priority queue q is kept
for state sets for prefix search. Scan operations will push the
newly created set into the queue with priority p(l...), where
l is the parsed string of the state being scanned.

Each state is a tuple (A — « - 8,4, 4,1, p(l...)) augmented
from the original Earley parser by adding 7, [, p(l...). Here
l is the parsed string of the state, and ¢, j are the indices
of the set that this rule originated. The parser then repeat-
edly executes three operations: prediction, scanning, and
completion modified from Earley parser:

e Prediction: for every state in S(m, n) of the form (4 —
a - BB,i,5,1,p(.)), add (B = -y,m,n,l,p(l.)) to
S(m,n) for every production in the grammar with B on
the left-hand side.

e Scanning: for every state in S(m,n) of the form (4 —
a-af,i,j,0,p(l..)), append the new terminal a to [ and
compute the probability p((I + a)...). Create a new set
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S(m + 1,n') where n’ is the current size of S(m + 1).
Add (A — aa- 8,4, 7,l+a,p((I+a)..)) to S(m+1,n').
Push S(m + 1,n’) into ¢ with priority p((I + a)...).

e Completion: for every state in S(m,n) of the form
(A — ~-,14,4,1,p(l..)), find states in S(7,j) of the
form (B — « - AB,¢,5',U',p(l'.)) and add (B —
aA- Bailvjla lap(l)) to S(m,n)

This parsing process is efficient since we do not need to
search through the entire tree. As shown in Figure 3 and
Algorithm 1, the best label sentence [ is returned when the
probability of termination is larger than any other prefix
probabilities. As long as the prefix probability is computed
correctly, it is guaranteed to return the best solution.

The original Earley parser is a special case of the generalized
Earley parser. Intuitively, for any input sentence to Earley
parser, we can always convert it to one-hot vectors and apply
the proposed algorithm. On the other hand, the original Ear-
ley parser cannot be applied to segmented one-hot vectors
since the labels are often grammatically incorrect. Hence
we have the following proposition.

Proposition 1. Earley parser is a special case of the gener-
alized Earley parser.

Proof. Let L(G) denote the language of grammar G, h(-)
denote a one-to-one mapping from a label to a one-hot
vector. L(G) is the input space for Earley parser. V[ €
L(G), the generalized Earley parser accepts h(l) as input.
Therefore the proposition follows. O

Here we emphasize two important distinctions of our
method to traditional probabilistic parsers with prefix prob-
abilities. i) In traditional parsers, the prefix probability is
the probability of a string being a prefix of some strings
generated by a grammar (top-down grammar prior). In our
case, the parser computes the bottom-up data likelihood. It
is straightforward to extend this to a posterior. ii) Traditional
parsers only maintain a parse tree, while our algorithm main-
tains both a parse tree and a prefix tree. The introduction of
the prefix tree into the parser enables us to efficiently search
in the grammar according to a desired heuristic.

4.1. Parsing Probability Formulation

The parsing probability p(I|zo.7) is computed in a dynamic
programming fashion. Let & be the last label in [. For ¢t = 0,
the probability is initialized by:

k1 contains only %
pllwo) =4 0 oy )
0  otherwise

Let [~ be the label sentence obtained by removing the last
label k£ from the label sentence . For ¢ > 0, the last frame ¢
must be classified as k. The previous frames can be labeled
as either [ or [~. Then we have:

p(l|wo.) = yr (p(Uwo:e—1) + P17 |20:4-1)) 2

Algorithm 1 Generalized Earley Parser
Initialize: S(0,0) = {(y — -R,0,0,¢,1.0)}.
q = priorityQueue()
q.push(1.0,(0,0,¢,5(0,0))) {Push to queue with prob
1.0 and index (0,0)}
while (m,n,l™, currentSet) = q.pop() do
for s = (r,4,4,1,p(l...)) € currentSet do
ifp(l) > p(l*): I* =1
if ris (A — « - Bp) then {prediction}
for each (B — +) in grammar g do
= (B =)
s =(r,m,n,1l,p(l.))
S(m,n).add(s")
end for
else if 7 is (A — « - af) then {scanning}
r"=(A— aa-p)
m'=m+1,n =[S(m+1)| -1
s =i, 4,0+ a,p((l+a)..))
S(m’,n').add(s")
g.push(p((l +a)..), (m', ', S(m!, )
else if r is (B — ~-) then {completion}
for each ((A — o - Bf),#,j')in S(i,j) do
r"=(A—aB-0)
s' = (i, 5", 1 p(l..))
S(m,n).add(s")
end for
end if
end for
if p(I7) > p(1) for all un-expanded I: return [~
end while
return [*

It is worth mentioning that when y¥ is wrongly given as 0,
the dynamic programming process will have trouble correct-
ing the mistake. Even if p({~|x.;—1) is high, the probability
p(l|zo.¢) will be 0. Fortunately, since the softmax function
is usually adopted to compute y, y~ will not be 0 and the
solution will be kept for consideration.

Then we compute the prefix probability p(l...|z¢.7) based
on p({~|xg.¢). For [ to be the prefix, the transition from [~
to [ can happen at any frame ¢ € {0,--- ,T}. Once the
label k is observed (the transition happens), [ becomes the
prefix and the rest frames can be labeled arbitrarily. Hence
the probability of [ being the prefix is:

T
p(l|zo.r) = pllzo) + Y yfp(l lwos—1) 3
t=1

In practice, the probability p(I|xg.;) decreases exponentially
as t increases and will soon lead to numeric underflow. To
avoid this, the probabilities need to be computed in log
space. The time complexity of computing the probabilities
is O(T') for each sentence [ because p(I~|z¢.;) are cached.
The worst case complexity of the entire parsing is O(T'|G|).
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4.2. Segmentation and Labeling

The generalized Earley parser gives us the best grammati-
cally correct label sentence [ to explain the sequence data,
which takes all possible segmentations into consideration.
Therefore the probability p(l|zo.7) is the summation of
probabilities of all possible segmentations. Let p({|yo..) be
the probability of the best segmentation based on the clas-
sifier output y for sentence /. We perform a maximization
over different segmentations by dynamic programming to
find the best segmentation:

e
p(llYo:e) = glggp(l’lyo:b)gyf )
where e is the time frame that [ ends and b is the time frame
that [~ ends. The best segmentation can be obtained by
backtracing the above probability. Similar to the previous
probabilities, this probability needs to be computed in log

space as well. The time complexity of the segmentation and
labeling is O(T?).

4.3. Future Label Prediction

Given the parsing result /[, we make grammar-based predic-
tions for the next label z to be observed. The predictions
are naturally obtained by the predict operation in the gener-
alized Earley parser.

To predict the next possible symbols at current position
(m, n), we search through the states S(m,n) of the form
(X = «a-28,1i,5,0,p(l..)), where the first symbol z after
the current position is a terminal node. The predictions X
are then given by the set of all possible z:

Y={z:3se€S(m,n),s=(X = a-z6,i,5,1,p(.))}
(&)
The probability of each prediction is then given by the pars-
ing likelihood of the sentence constructed by appending the
predicted label z to the current sentence [. Assuming that
the best prediction corresponds to the best parsing result,
the goal is to find the best prediction z* that maximizes the
following conditional probability as parsing likelihood:

2" = argmax p(z,l|G) (6)
zEX
For a grammatically complete sentence u, the parsing likeli-
hood is simply the Viterbi likelihood (Viterbi, 1967) given
by the probabilistic context-free grammar. For an incom-
plete sentence [ of length |I], the parsing likelihood is given
by the sum of all the grammatically possible sentences:

pIG) = >

uy, =l

p(U|G) (7

where u1.);| denotes the first || words of a complete sentence
u, and p(u|G) is the Viterbi likelihood of w.

4.4. Maximum Likelihood Estimation for Prediction

We are interested in finding the best grammar and classifier
that give us the most accurate predictions based on the
generalized Earley parser. Let G be the grammar, f be
the classifier, and D be the set of training examples. The
training set consists of pairs of complete or partial data
sequence « and the corresponding label sequence y for
all the frames in . By merging consecutive labels in y
that are the same, we can obtain partial label sentences [
and predicted labels z. Hence we have D = {(x,y,1,2)}.
The best grammar G* and the best classifier f* together
minimizes the prediction loss:

(;’*7 f* = argmin ﬁpred(Gv f) (8)
G, f

where the prediction loss is given by the negative log likeli-
hood of the predictions over the entire training set:

LpeaG ) == Y log(p(z]))

(z,z)€D

— Y (log(p(2]l, G)) +log(p(i]z)))

(x,l,z)€D

grammar classifier

€))
Given the intermediate variable [, the loss is decomposed
into two parts that correspond to the induced grammar and
the trained classifier, respectively. Let u € {l} be the com-
plete label sentences in the training set (i.e., the label sen-
tence for a complete sequence x). The best grammar maxi-
mizes the following probability:

=[] rlG)

H (|1 G) = H pzl|G
(10)

(z,l)eD (z,l)eD ueD

where denominators p(I|G) are canceled by the previous nu-
merator p(z, !~ |G), and only the likelihood of the complete
sentences remain. Therefore inducing the best grammar that
gives us the most accurate future prediction is equivalent
to the maximum likelihood estimation (MLE) of the gram-
mar for complete sentences in the dataset. This finding lets
us to turn the problem (induce the grammar that gives the
best future prediction) into a standard grammar induction
problem, which can be solved by existing algorithms, e.g.,
(Solan et al., 2005) and (Tu et al., 2013).

The best classifier minimizes the second term of Eq. 9:

f* = argmin — Z log(p(l|x)
f

(x,l,2)€D

~ argmlnf Z Zyk log(yk)

(z,y)eD k

(11

where p(I|x) can be maximized by the CTC loss (Graves
et al., 2006). In practice, it can be substituted by the com-
monly adopted cross entropy loss for efficiency. Therefore
we can directly apply generalized Earley parser to outputs
of general detectors/classifiers for parsing and prediction.
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5. Related Work

Future activity prediction. This is a relatively new but
important domain in computer vision. (Ziebart et al., 2009;
Gupta et al., 2009; Yuen & Torralba, 2010; Ryoo, 2011;
Kitani et al., 2012; Kuderer et al., 2012; Wang et al., 2012;
Pei et al., 2013; Walker et al., 2014; Vu et al., 2014; Li &
Fu, 2014; Wei et al., 2016; Holtzen et al., 2016; Alahi et al.,
2016; Xie et al., 2018; Rhinehart & Kitani, 2017; Ma et al.,
2017) predict human trajectories/actions in various settings
including complex indoor/outdoor scenes. Koppula, Gupta
and Saxena (KGS) (Koppula et al., 2013) proposed a model
incorporating object affordances that detects and predicts
human activities. Koppula ef al. (Koppula & Saxena, 2016)
later proposed an anticipatory temporal conditional random
field to model the spatial-temporal relations. Qi et al. (Qi
et al., 2017) proposed a spatial-temporal And-Or graph (ST-
AOQG) for activity prediction.

Hierarchical/grammar models. Pei e al. (Pei et al., 2013)
unsupervisedly learned a temporal grammar for video pars-
ing. Pirsiavash et al. (Pirsiavash & Ramanan, 2014) pro-
posed a segmental grammar to parse videos. Holtzen et
al. (Holtzen et al., 2016) inferred human intents by a hi-
erarchical model. The ST-AOG (Qi et al., 2017) is also a
type of grammar model. Grammar-based methods show
effectiveness on tasks that have compositional structures.

However, previous grammar-based algorithms take sym-
bolic inputs like the traditional language parsers. This seri-
ously limits the applicability of these algorithms. Addition-
ally, the parser does not provide guidance for either training
the classifiers or segmenting the sequences. They also lack
a good approach to handle grammatically incorrect label
sentences. For example, (Qi et al., 2017) finds in the training
corpus the closest sentence to the recognized sentence and
applies the language parser afterward. In our case, the pro-
posed parsing algorithm takes sequence data of raw signals
as input and generates the label sentence as well as the parse
tree. All parsed label sentences are grammatically correct,
and a learning objective is formulated for the classifier.

6. Human Activity Detection and Prediction

We evaluate our method on the task of human activity detec-
tion and prediction. We present and discuss our experiment
results on two datasets, CAD-120 (Koppula et al., 2013)
and Watch-n-Patch (Wu et al., 2015), for comparisons with
state-of-the-art methods and evaluation of the robustness of
our approach. CAD-120 is the dataset that most existing
prediction algorithms are evaluated on. It contains videos
of daily activities that are long sequences of sub-activities.
Watch-n-Patch is a daily activity dataset that features for-
gotten actions. Results show that our method significantly
outperforms the other methods for activity prediction.

6.1. Grammar Induction

In both experiments, we used a modified version of the
ADIOS (automatic distillation of structure) (Solan et al.,
2005) grammar induction algorithm to learn the event gram-
mar. The algorithm learns the production rules by generating
significant patterns and equivalent classes. The significant
patterns are selected according to a context-sensitive cri-
terion defined regarding local flow quantities in the graph:
two probabilities are defined over a search path. One is
the right-moving ratio of fan-through (through-going flux
of path) to fan-in (incoming flux of paths). The other one,
similarly, is the left-going ratio of fan-through to fan-in. The
criterion is described in detail in (Solan et al., 2005).

The algorithm starts by loading the corpus of activity onto
a graph whose vertices are sub-activities, augmented by
two special symbols, begin and end. Each event sample
is represented by a separate path over the graph. Then it
generates candidate patterns by traversing a different search
path. At each iteration, it tests the statistical significance of
each subpath to find significant patterns. The algorithm then
finds the equivalent classes that are interchangeable. At the
end of the iteration, the significant pattern is added to the
graph as a new node, replacing the subpaths it subsumes.
We favor shorter patterns in our implementation.

6.2. Experiment on CAD-120 Dataset

Dataset The CAD-120 dataset is a standard dataset for
human activity prediction. It contains 120 RGB-D videos of
four different subjects performing 10 high-level activities,
where each high-level activity was performed three times
with different objects. It includes a total of 61,585 total
video frames. Each video is a sequence of sub-activities
involving 10 different sub-activity labels. The videos vary
from subject to subject regarding the lengths and orders of
the sub-activities as well as the way they executed the task.

Evaluation metrics We use the following metrics to eval-
uate and compare the algorithms. 1) Frame-wise detection
accuracy of sub-activity labels for all frames. 2) Future
3s online prediction accuracy. We compute the frame-wise
accuracy of prediction of the sub-activity labels of the future
3s (using the frame rate of 14Hz as reported in (Koppula
et al., 2013)). The predictions are made online at each frame
t, i.e., the algorithms only sees frame 0 to ¢ and predicts the
labels of frame ¢ + 1 to ¢t + d¢. 3) Future segment online
prediction accuracy. At each frame ¢, the algorithm predicts
the sub-activity label of the next video segment.

We consider the overall micro accuracy (P/R), macro pre-
cision, macro recall and macro F1 score for all evaluation
metrics. Micro accuracy is the percentage of correctly clas-
sified labels. Macro precision and recall are the average of
precision and recall respectively for all classes.
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Comparative methods We compare our method with
four state-of-the-art methods for activity prediction:

1. KGS (Koppula et al., 2013): a Markov random field
model where the nodes represent objects and sub-activities,
and the edges represent the spatial-temporal relationships.
Future frames are predicted based on the transition proba-
bilities given the inferred label of the last frame.

2. Anticipatory temporal CRF (ATCRF) (Koppula & Sax-
ena, 2016): an anticipatory temporal conditional random
field that models the spatial-temporal relations through ob-
ject affordances. Future frames are predicted by sampling a
spatial-temporal graph.

3. ST-AOG + Earley (Qi et al., 2017): a spatial-temporal
And-Or graph (ST-AOG) that uses a symbolic context-free
grammar to model activities. This sets up a comparison be-
tween our proposed method and methods that use traditional
probabilistic parsers. Since traditional parsers operate on
symbolic data, extra efforts need to be done first to extract
symbols from sequence data. In this comparative method,
the videos are first segmented and labeled by classifiers; the
predictions are then made by the original Earley parser.

4. Bidirectional LSTM (Bi-LSTM): a two-layer Bi-LSTM
with a hidden size of 256. For the detection task, the output
for each frame input is the sub-activity label. For the future
3s prediction, the LSTM is trained to output the label for
frame ¢ 4 3s for an input frame at time ¢. For future segment
prediction, it outputs the label of the next segment for an
input frame. All three tasks use the same training schemes.
5. Bi-LSTM + generalized Earley parser (our method): the
proposed generalized Earley parser applied to the classifier
output of the above detection Bi-LSTM. The predictions
for the next segments are made according to Section 4.3.
The lengths of unobserved segments are sampled from a
log-normal distribution for the future 3s prediction.

Feature extraction All methods in the experiment use the
same publicly available features from KGS (Koppula et al.,
2013). These features include the human skeleton features
and human-object interaction features for each frame. The
human skeleton features are location and distance features
(relative to the subjects head location) for all upper-skeleton
joints of a subject. The human-object features are spatial-
temporal, containing the distances between object centroids
and skeleton joint locations as well as the temporal changes.

Experiment results We follow the convention in
KGS (Koppula et al., 2013) to train on three subjects and
test on a new subject with a 4-fold validation. The results
for the three evaluation metrics are summarized in Table 1,
Table 2 and Table 3, respectively. Our method outperforms
the comparative methods on all three tasks. Specifically,
the generalized Earley parser on top of a Bi-LSTM per-
forms better than ST-AOG, while ST-AOG outperforms the
Bi-LSTM. More discussions are highlighted in Section 6.4.

Table 1. Detection results on CAD-120.

Micro Macro
Method P/R Prec. Recall Fl-score
KGS (Koppula et al., 2013) 68.2 | 71.1 62.2 66.4
ATCREF (Koppula & Saxena, 2016) | 70.3 74.8 66.2 70.2
Bi-LSTM 762 | 785 745 74.9
ST-AOG + Earley (Qi et al., 2017) 76.5 | 77.0 752 76.1
Bi-LSTM + Generalized Earley 794 | 874 770 79.7

Table 2. Future 3s prediction results on CAD-120.

Micro Macro
Method P/R | Prec. Recall Fl-score
KGS (Koppula et al., 2013) 28.6 - - 11.1
ATCRF (Koppula & Saxena, 2016) | 49.6 - - 40.6
Bi-LSTM 542 | 61.6 399 34.1
ST-AOG + Earley (Qi et al., 2017) 552 | 565  56.6 56.6
Bi-LSTM + Generalized Earley 61.5 | 63.7 58.7 59.9
Table 3. Segment prediction results on CAD-120.
Micro Macro
Method P/R | Prec. Recall Fl-score
Bi-LSTM 314 | 100 127 10.1

ST-AOG + Earley (Qietal.,2017) | 543 | 61.4  39.2 45.4
Bi-LSTM + Generalized Earley 722 | 70.3 705 67.6

6.3. Experiment on Watch-n-Patch Dataset

Dataset Watch-n-Patch is an RGB-D dataset that features
forgotten actions. For example, a subject might fetch milk
from a fridge, pour milk, and leave. The typical action
“putting the milk back into the fridge” is forgotten. The
dataset contains 458 videos with a total length of about 230
minutes, in which people forgot actions in 222 videos. Each
video in the dataset contains 2-7 actions interacted with
different objects. 7 subjects are asked to perform daily activ-
ities in 8 offices and 5 kitchens with complex backgrounds.
It consists of 21 types of fully annotated actions (10 in the
office, 11 in the kitchen) interacted with 23 types of objects.

Feature extraction We extract the same features as de-
scribed in (Wu et al., 2015) for all methods. Similar to the
previous experiment, the features are composed of skele-
ton features and human-object interaction features extracted
from RGB-D images. The skeleton features include angles
between connected parts, the change of joint positions and
angles from previous frames. Each frame is segmented into
super-pixels, and foreground masks are detected. We extract
features from the image segments with more than 50% in
the foreground mask and within a distance to the human
hand joints in both 3D points and 2D pixels. Six kernel
descriptors (Wu et al., 2014) are extracted from these im-
age segments: gradient, color, local binary pattern, depth
gradient, spin, surface normals, and KPCA/self-similarity.

Experiment results We use the same evaluation metrics
as the previous experiment and compare our method to ST-
AOG (Qi et al., 2017) and Bi-LSTM. We use the train/test
splitin (Wu et al., 2015). The results for the three evalua-
tion metrics are summarized in Table 4, Table 5 and Table 6,
respectively. Our method slightly improves the detection re-
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Table 4. Detection results on Watch-n-Patch.

Micro Macro
Method P/R | Prec. Recall Fl-score
ST-AOG + Earley (Qi et al., 2017) | 79.3 71.5 73.5 71.9
Bi-LSTM 84.0 | 79.7 82.2 80.3
Bi-LSTM + Generalized Earley 84.8 | 80.7 834 81.5

Table 5. Future 3s prediction results on Watch-n-Patch.

Micro Macro
Method P/R Prec. Recall Fl-score
Bi-LSTM 42.1 66.6 62.6 61.8

ST-AOG + Earley (Qietal.,2017) | 48.9 | 43.1 39.3 39.3
Bi-LSTM + Generalized Earley 49.0 | 570 56.5 55.3

Table 6. Segment prediction results on Watch-n-Patch.

Micro Macro
Method P/R Prec. Recall Fl-score
Bi-LSTM 21.7 11.8 233 14.0

ST-AOG + Earley (Qietal.,2017) | 294 | 285 189 19.9
Bi-LSTM + Generalized Earley 356 | 592 593 53.5

sults over the Bi-LSTM outputs, and outperforms the other
methods on both prediction tasks. In general, the algorithms
make better predictions on CAD-120, since Watch-n-Patch
features forgotten actions and the behaviors are more unpre-
dictable. More details are discussed in Section 6.4.

6.4. Discussion

How different are the classifier outputs and the final out-
puts for detection? Figure 4 shows some qualitative exam-
ples of the ground truth segmentations and results given by
different methods. The segmentation results show that the
refined outputs are similar with the classifier outputs since
the confidence given by the classifiers are often very high.

How does the generalized Earley parser refine the classi-
fier detection outputs? When the classifier outputs violate
the grammar, two types of refinements occur: i) correction
and deletion of wrong labels as shown in 4a; ii) insertion
of new labels as shown in 4b. The inserted segments are
usually very short to accommodate both the grammar and
the classifier outputs. Most boundaries of the refined results
are well aligned with the classifier outputs.

Why do we use two metrics for future prediction? The
future 3s prediction is a standard evaluation criterion set
up by KGS and ATCRF. However, this criterion does not
tell how well the algorithm predicts the next segment label.
1) At any time frame, part of the future 3s involves the
current sub-activity for most of the times. ii) If the predicted
length of the current sub-activity is inaccurate, the frame-
wise inaccuracy drops proportionally, even when the future
segment label prediction is accurate. Therefore we also
compare against the future segment label prediction because
it is invariant to variations in activity lengths.

How well does the generalized Earley parser perform
for activity detection and prediction? From the results we
can see that it slightly improves over the classifier outputs

(a) Correction

(b) Insertion

Figure 4. Qualitative results of segmentation results. In each group
of four segmentations, the rows from the top to the bottom show
the results of: 1) ground-truth, 2) ST-AOG + Earley, 3) Bi-LSTM,
and 4) Bi-LSTM + generalized Earley parser. The results show
(a) corrections and (b) insertions by our algorithm on the initial
segment-wise labels given by the classifier (Bi-LSTM).

for detection, but significantly outperforms the classifier for
predictions. The modifications on classifier outputs (correc-
tions and insertions in Figure 4) are minor but important to
make the sentences grammatically correct, thus high-quality
predictions can be made.

How useful is the grammar for activity modeling? From
Table 2, Table 3, Table 5 and Table 6 we can see that both ST-
AOG and generalized Earley parser outperforms Bi-LSTM
for prediction. Prediction algorithms need to give different
outputs for similar inputs based on the observation history.
Hence the non-Markovian property of grammars is useful
for activity modeling, especially for future prediction.

How robust is the generalized Earley parser? Compar-
ing Table 3 and Table 6 we can see that there is a perfor-
mance drop when the action sequences are more unpre-
dictable (in the Watch-n-Patch dataset). But it is capable of
improving over the noisy classifier inputs and significantly
outperforms the other methods. It is also robust in the sense
that it can always find the best sentence in a given language
that best explains the classifier outputs.

7. Conclusions

We proposed a generalized Earley parser for parsing se-
quence data according to symbolic grammars. Detections
and predictions are made by the parser given the probabilis-
tic outputs from any classifier. We are optimistic about and
interested in further applications of the generalized Earley
parser. In general, we believe this is a step towards the goal
of integrating the connectionist and symbolic approaches.
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