
Supplementary Material for Generalized Earley Parser

Siyuan Qi 1 Baoxiong Jia 1 2 Song-Chun Zhu 1

1. Review of Formal Grammar
Figure 1 shows an example of English grammar. We review
some definitions in the formal language theory:

• Grammar: a set of rules by which valid sentences in a
language are constructed.
• Non-terminal: a grammar symbol that can be re-
placed/expanded to a sequence of symbols.
• Terminal: an actual word in a language; these are the
symbols in a grammar that cannot be replaced by anything
else. ”terminal” is supposed to conjure up the idea that it is
a dead-end: pno further expansion is possible.
• Production: a grammar rule that describes how to re-
place/exchange symbols.

Parsing is the process of analyzing a string of symbols,
conforming to the rules of a formal grammar. Figure 2
shows the function of a parsing algorithm: it analyzes a
sentence and generates a parse tree.

<sentence> ! <subject> <verbphrase> <object>
<subject> ! “This” | “Computers” | “I”
<verbphrase> ! <adverb> <verb> | <verb>
<adverb> ! “never”
<verb> ! “is” | “run” | “am” | “tell”
<object> ! “the” noun | “a” noun | noun
noun ! “university” | “world” | “lies”

Figure 1. Production rules of an example English grammar. “|”
means “or”. Non-terminal symbols are denoted by < · >, and
terminal symbols are denoted by “ · ”. Example sentences from
the language defined by this grammar are: “This is a university”,
“Computers run the world”, “I never tell lies”.

“This is a university”

�	��	��

������ ���
�����

���
 �

���� 	
�	

� �	����
���

Parsing

Parse Tree

Original Sentence

Figure 2. Parsing a sentence according to grammar productions.

1University of California, Los Angeles, USA 2Peking
University, Beijing, China. Correspondence to: Siyuan Qi
<syqi@cs.ucla.edu>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

2. Example of Generalized Earley Parser
Figure 3 shows a walk-through example of running the gen-
eralized Earley parser, which corresponds to Figure 3 in the
original paper.. The given language contains three terminal
symbols: “0”, “1”, and “+”. The input is a 5 ⇥ 3 matrix,
containing the classification confidence of 3 symbols for 5
frames. The cached probabilities for different prefixes are
computed along the inference process. The algorithm essen-
tially expands a prefix tree by three operations: scanning,
prediction, and completion. The final parsing output is the
optimal string “0 + 1” with probability 0.43.

Sample grammar: � ! R; R ! R+R; R ! 0|1

Input (classifier output) Cached probability
Frame 0 1 +

0 0.8 0.1 0.1
1 0.8 0.1 0.1
2 0.1 0.1 0.8
3 0.1 0.8 0.1
4 0.1 0.8 0.1

Frame ✏ 0 1 0 + 0 + 0 0 + 1 0 + 1 +
0 0 8e-1 0.1 0 0 0 0
1 0 6.4e-1 1e-2 8e-2 0 0 0
2 0 6.4e-2 1e-3 0.58 8e-3 8e-3 0
3 0 6.4e-3 8e-4 6.4e-2 5.8e-2 0.47 8e-4
4 0 6.4e-4 6.4e-5 7e-4 1.2e-2 0.42 4.7e-2

prefix 1 8e-1 0.1 0.60 7.2e-2 0.52 4.8e-3

State: | state # | rule | origin | prefx | comment |
S(0, 0) : l = ✏, p(l) = 0.0, p(l···) = 1.0
(1) � ! ·R 0, 0 ✏ start rule
(2) R ! ·R+R 0, 0 ✏ predict: (1)
(3) R ! ·0 0, 0 ✏ predict: (1)
(4) R ! ·1 0, 0 ✏ predict: (1)
S(1, 0) : l = “0”, p(l) = 6.4e� 4, p(l···) = 0.8
(1) R ! 0· 0, 0 “0” scan: S(0, 0)(3)
(2) R ! R ·+R 0, 0 “0” complete: (1) and S(0, 0)(2)
(3) � ! R· 0, 0 “0” complete: (2) and S(0, 0)(1)
S(1, 1) : l = “1”, p(l) = 6.4e� 4, p(l···) = 0.1
(1) R ! 0· 0, 0 “1” scan: S(0, 0)(4)
S(2, 0) : l = “0 + ”, p(l) = 7.0e� 3, p(l···) = 0.599
(1) R ! R+ ·R 0, 0 “0 + ” scan: S(1, 0)(2)
(2) R ! ·R+R 2, 0 “0 + ” predict: (1)
(3) R ! ·0 2, 0 “0 + ” predict: (1)
(4) R ! ·1 2, 0 “0 + ” predict: (1)
S(3, 0) : l = “0 + 0”, p(l) = 1.2e� 2, p(l···) = 7.2e� 2
(1) R ! 0· 2, 0 “0 + 0” scan: S(2, 0)(3)
S(3, 1) : l = “0 + 1”, p(l)=0.43, p(l···) = 0.52
(1) R ! 1· 2, 0 “0 + 1” scan: S(2, 0)(4)
(2) R ! R+R· 0, 0 “0 + 1” complete: (1) and S(2, 0)(1)
(3) R ! R ·+R 2, 0 “0 + 1” complete: (1) and S(2, 0)(2)
(4) � ! R· 0, 0 “0 + 1” complete: (2) and S(0, 0)(1)
S(4, 0) : l = “0 + 1 + ”, p(l) = 4.7e� 2, p(l···) = 4.8e� 2
(1) R ! 0· 2, 0 “0 + 0” scan: S(3, 1)(3)
Final output: l⇤ = “0 + 1” with probability 0.43

Figure 3. An example of the generalized Earley parser. This exam-
ple corresponds to Figure 3 in the original paper.

Generalized Earley Parser

Figure 4. Visualization of the selected super-pixels for extracting kernel descriptors

3. Feature Extraction
For the CAD-120 dataset, we use the publicly available
features from KGS (Koppula et al., 2013). For the Watch-n-
Patch dataset, we extract the same features as described in
(Wu et al., 2015) for all methods. The features are composed
of skeleton features and human-object interaction features.
The skeleton features include angles between the connected
parts, the change of joint positions and angles regarding
previous frames and the first frame. We used zero values for
those frames in which the joints are not tracked. The interac-
tion object features are extracted based on RGB-D images.
First of all, we calculate the super-pixel segmentation for
both RGB and depth images. For each frame, an edge de-
tection algorithm (Dollár & Zitnick, 2013) is applied to
both the resized RGB (1920⇥1080 to 960⇥540) and the
depth images. The selected super-pixels for are shown in
Figure 2. Next, we extract super-pixel segmentations from
the contour maps generated by the edge detection algorithm.
In this case, 0.05 and 0.13 are chosen as the segmenting
threshold values for RGB and depth respectively. Second,
a moving object detection algorithm is used for monitor-
ing the foreground mask in each frame. Finally, we extract
features from the image segments with more than 50% in
the foreground mask and within a distance to the human
hand joints in both 3D points and 2D pixels. To model the
interactive object features more accurately, we removed the
false positive segments which overlap with human joints.
Overall, we extracted six kernel descriptors (Wu et al.,
2014) from these image segments: gradient, color, local
binary pattern, depth gradient, spin, surface normals, and

KPCA/self-similarity. We first set grid size to 8 and patch
size to 16 for generating feature vectors. Then, we construct
kernel descriptors by projecting these feature vectors to the
visual words generated by K-means algorithm. In this ex-
periment, we generated visual words separately for office
scene and kitchen scene. We used 400 visual words for
RGB images and 200 for depth images accordingly.

4. Segmentation Results
The segmentation results on the Watch-n-Patch are shown
in Figure 5. Here we visualize the video segmentation of the
ground truth labels, the results generated by ST-AOG (Qi
et al., 2017), the Bi-LSTM algorithm, and our algorithm.

References
Dollár, P. and Zitnick, C. L. Structured forests for fast edge

detection. In ICCV, 2013.

Koppula, H. S., Gupta, R., and Saxena, A. Learning human
activities and object affordances from rgb-d videos. IJRR,
2013.

Qi, S., Huang, S., Wei, P., and Zhu, S.-C. Predicting human
activities using stochastic grammar. In ICCV, 2017.

Wu, C., Lenz, I., and Saxena, A. Hierarchical semantic
labeling for task-relevant rgb-d perception. In RSS, 2014.

Wu, C., Zhang, J., Savarese, S., and Saxena, A. Watch-n-
patch: Unsupervised understanding of actions and rela-
tions. In CVPR, 2015.

Generalized Earley Parser

Figure 5. Qualitative results of segmentation results. In each group of four segmentations, the rows from the top to the bottom shows: 1)
ground-truth, 2) results of ST-AOG, 3) Bi-LSTM, and 4) Bi-LSTM + generalized Earley parser.

