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Abstract

Intuitive physics is pivotal for human understanding of
the physical world, enabling prediction and interpretation
of events even in infancy. Nonetheless, replicating this level
of intuitive physics in artificial intelligence (AI) remains a
formidable challenge. This study introduces X-VoE, a com-
prehensive benchmark dataset, to assess AI agents’ grasp
of intuitive physics. Built on the developmental psychology-
rooted Violation of Expectation (VoE) paradigm, X-VoE
establishes a higher bar for the explanatory capacities of
intuitive physics models. Each VoE scenario within X-VoE
encompasses three distinct settings, probing models’ compre-
hension of events and their underlying explanations. Beyond
model evaluation, we present an explanation-based learning
system that captures physics dynamics and infers occluded
object states solely from visual sequences, without explicit oc-
clusion labels. Experimental outcomes highlight our model’s
alignment with human commonsense when tested against
X-VoE. A remarkable feature is our model’s ability to visu-
ally expound VoE events by reconstructing concealed scenes.
Concluding, we discuss the findings’ implications and out-
line future research directions. Through X-VoE, we catalyze
the advancement of AI endowed with human-like intuitive
physics capabilities.

1. Introduction

Humans possess a profound understanding of the physical
world, enabling them to predict the outcomes of physical in-
teractions and events [6]. From infancy, humans demonstrate
intuitive physics, comprehending actions and consequences
even in unfamiliar scenarios. For the machine learning com-
munity, the challenge lies in emulating this level of intuitive
physics understanding. This study introduces X-VoE, a com-
prehensive benchmark dataset designed to assess and push
the limits of AI agents’ intuitive physics comprehension.

The notion of intuitive physics, observed even in young in-
fants, has been foundational in cognitive science and develop-
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Figure 1: Evaluation settings in the ball blocking exemplar sce-
nario of X-VoE. The explanation video illustrates potential hidden
dynamics. Circles denote no surprise, and exclamation marks in-
dicate surprise. In the predictive setup (S1), a solvable pair is pre-
sented without requiring explanation: predicting observed entities’
dynamics suffices to reason about the outcome. In the hypothetical
setup (S2), perceiving the direction of outgoing balls might lead
to surprise, yet alternate explanations exist—e.g., a hidden blocker
behind the wall causing ball rebound. However, a random agent’s
scores show negligible disparity, necessitating the explicative setup
(S3) to discern surprises, demanding explanatory ability absent in
predictive-only or random agents.

mental psychology [36]. Infants show surprise when physical
events violate their expectations, indicating an understanding
of fundamental physical principles [5]. Explanation-based
learning has been proposed as a mechanism contributing to
the development and refinement of intuitive physics under-
standing [4]. However, recent advances in this field have
primarily resulted in predictive models, lacking the explana-
tory capacity and falling short of capturing even infant-level
intuitive physics comprehension [30, 35].

Central to our work is the Violation of Expectation (VoE)
paradigm, widely employed in psychological studies to eval-
uate infants’ intuitive physics understanding [3, 5]. In this
paradigm, participants exhibit surprise, indicated by pro-
longed attention, when exposed to events that either follow
or violate intuitive physics laws. Inspired by the effective-
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ness of this paradigm, we adopt it to evaluate AI agents’
intuitive physics comprehension. In each trial, models en-
counter experiments adhering to or contravening intuitive
physics laws. Models succeed in the VoE test if they display
high surprise scores for physics-violating experiments and
lower scores for compliant ones.

Existing works within the machine learning and computer
vision community have embraced the VoE paradigm [10, 30,
32, 35, 43]. However, most of these efforts primarily focus
on predictive abilities, disregarding the explanatory compo-
nent [1, 29, 30, 32, 35, 37]. This perspective neglects the
fundamental aspect of VoE—the act of explaining observed
events. In psychological studies, human participants express
surprise not at the moment a physics-violating event occurs,
but upon learning of its outcome. This observation under-
scores the significance of explanation within VoE.

Motivated by these insights, we introduce X-VoE, an
intuitive physics evaluation dataset designed specifically to
incorporate explanation within VoE. Distinct from previous
efforts that concentrated on predictive scenarios, our dataset
encompasses setups that require explaining observed events
in diverse VoE situations. We establish three VoE settings for
each of the four scenarios: ball collision, blocking, object per-
manence, and continuity (see Fig. 2). Each scenario features
predictive, hypothetical, and explicative setups. Notably, the
three setups within the ball-blocking scenario distinguish
explanatory agents from predictive and random ones.

Furthermore, we propose the eXplanation-based Physics
Learner (XPL) model to emulate the explanation-based VoE
process, inspired by findings in human studies [3, 4]. While
XPL is adaptable to diverse deep architectures, we specifi-
cally build it upon PLATO [30] due to its robust performance.
Our model incorporates three self-supervised modules: per-
ception for image encoding, Transformer reasoning for oc-
cluded object prediction, and dynamic reasoning for simu-
lating physical dynamics. Importantly, our model introduces
a reasoning sub-component to update representations of oc-
cluded objects, akin to infants’ explanation-based learning
when confronted with unexpected outcomes [3].

In summary, our work makes three significant contribu-
tions:
• Introduction of X-VoE, a comprehensive intuitive physics

evaluation dataset that challenges AI agents not only in
predictive capabilities but also in their capacity to explain.
The dataset covers four distinct scenarios, each with pre-
dictive, hypothetical, and explicative setups. This allows
for a more comprehensive assessment of intuitive physics
understanding within VoE.

• Proposition of the XPL model, enhancing existing ap-
proaches with an explanatory module that improves
VoE evaluation. Our model comprises three modules—
perception, reasoning, and dynamics learning—for holistic
comprehension and simulation of physical dynamics.

• Experimental demonstration of XPL’s enhanced perfor-
mance in alignment with human commonsense compared
to other baselines in X-VoE. Additionally, XPL offers
insights into hidden factors, as depicted in Fig. 1.

2. Related work
Intuitive physics Intuitive physics forms a cornerstone

of human cognition, enabling rapid and accurate predic-
tions about moving object trajectories [19]. To evaluate ma-
chine understanding in this realm, benchmark datasets have
emerged, often focusing on predicting future states [6, 8, 20,
45, 9] or inferring object properties [21, 22, 34]. These meth-
ods predominantly gauge model performance by comparing
generated predictions to ground truth.

More recently, the Violation of Expectation (VoE)
paradigm has garnered attention within the machine learning
and computer vision community [10, 30, 32, 35, 43]. Rooted
in developmental psychology, the VoE paradigm quantifies
model surprise when presented with events that challenge
intuitive physics laws. This perspective provides an alter-
native angle for assessing intuitive physics understanding.
Notably, the IntPhys dataset [32] pioneered this VoE-based
benchmarking approach. ADEPT [35] introduced a model
combining re-rendering and object tracking. PLATO [30]
decomposed the learning process into perception and dynam-
ics prediction. Differing from conventional intuitive physics
learning, the VoE paradigm does not rely on absolute ground
truth. Instead, it hinges on relative measures of surprise, akin
to developmental studies that assume higher responses indi-
cate increased surprise. This emphasizes the role of explana-
tion in VoE, as demonstrated in Fig. 1. In contrast to prior
works that often neglected this vital component, our X-VoE
includes scenarios that demand both traditional prediction-
based understanding and explanation-based comprehension.
Additionally, we propose an explanation-enhanced physics
learner, XPL, which achieves improved performance and
interpretability by incorporating explanations.

Video prediction The challenge of comprehending
videos and making plausible predictions of future states from
current observations has been a longstanding problem within
computer vision [2, 27, 28], closely connected to the VoE
paradigm. Solving VoE problems frequently involves predict-
ing future frames for inference and evaluation. However, this
prediction task is intricate due to the inherent complexity of
modeling real-world dynamics and conditional image synthe-
sis [38, 44]. Within the computer vision community, various
architectures have been explored to address these challenges
and enhance the quality of generated images [38, 44]. The
task is further complicated by the need to model relationships
between frames, leading to approaches that integrate spatial
transformations over time [15, 25, 31]. Disentanglement of
motion and content has also been pursued [11, 18, 24, 40].
More recent efforts involve learning physics-based dynam-
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Figure 2: Testing scenarios in X-VoE: ball collision, blocking, object permanence, and object continuity. Within each scenario, frames
in a testing video are linked by the same setup identification number (e.g., S1). Black links denote non-surprising videos, while red links
indicate surprising ones. Notably, certain videos require explanation to become non-surprising. For example, in the right S2 branch of the
object permanence scenario, three cubes on the floor become non-surprising due to preceding observation of two cubes dropping, suggesting
a hidden cube behind the wall.

ics from videos and reasoning about unknown factors [16].
Within X-VoE, we assess the performance of these video
prediction models as baseline methods.

Object-centric dynamics The “vision-as-inverse-
graphics” framework and the versatility of physics
simulation have led to models based on physics simulation,
which offer notable advantages in terms of accuracy and
generality [8, 33]. However, these models are often heavily
reliant on specific physics engines, limiting their flexibility.
In response, recent works have leveraged graph neural
networks and object-centric representations to mitigate
this dependence [30, 42]. By abstracting irrelevant signals
and focusing on objects, these models establish a tighter
mapping between visual inputs and physics engines.
Further, some models can directly simulate real physics
engines [6, 13, 45]. These object-centric dynamics models
have demonstrated the ability to capture intricate dynamics.
Our approach in X-VoE aligns with this framework, using
object-centric representations for downstream computation
and reasoning.

3. Generating X-VoE
Our X-VoE dataset encompasses four distinct scenarios,

covering ball collision, ball blocking, object permanence,
and object continuity. To evaluate various intuitive physics
principles, each scenario, except object permanence, com-
prises three distinct settings: predictive, hypothetical, and
explicative, as illustrated in Fig. 2. Within each setting, we
create 1,000 procedurally generated scene pairs using Un-
real Engine 4. Importantly, X-VoE primarily serves as a test
suite for evaluating intuitive physics understanding, with no
constraints on model training data.

3.1. Testing data

We generate testing videos that span four key aspects of
object dynamics: ball collision, ball blocking, object per-
manence, and object continuity. Refer to Fig. 2 for a visual
overview.

Collision In this scenario, a ball traverses the scene,
while an occlusion wall is positioned centrally. In the pre-
dictive setting (S1), we design a scenario where a ball of
differing color but identical mass stands behind a wall. The
incoming ball collides with this hidden ball, resulting in the
incoming ball coming to a halt and the concealed ball con-
tinuing its trajectory. To introduce VoE effects, we enable
the incoming ball to pass through the hidden ball. In the hy-
pothetical setting (S2), we create a scene featuring a central
wall concealing objects behind it. An incoming ball enters
the scene from the left and rolls behind the wall. In some
cases, an additional ball appears to pass through the wall,
while in others, the incoming ball does so. This distinction
hinges on whether an unseen ball is situated behind the wall.
The explicative setting (S3) closely mirrors the hypothetical
setting, but we lift the wall to reveal the concealed scene’s
contents.

Blocking The blocking scenario is conceptually similar
to the collision scenario, substituting the hidden ball with a
stationary cube. The impact of the incoming ball causes it to
rebound upon collision with the cube.

Object permanence Drawing inspiration from devel-
opmental psychology literature, we recreate a scenario in-
volving cubes falling to the ground and becoming occluded
by a wall. In the predictive setting (S1), we devise a case
where a wall descends to an initially vacant ground, followed
by three cubes falling behind the wall. To elicit VoE effects,
we raise the wall, revealing fewer than three objects. In the
hypothetical setting (S2), the scenario begins with a wall
positioned centrally, obscuring objects behind it. Three or
two cubes fall behind the wall. When the wall is lifted, the
scene consistently features three cubes, even when only two
cubes initially fell. This reflects the possibility of one cube
being hidden behind the wall from the outset.

Object continuity Motivated by psychology studies [1],
we introduce a wall with a lower-half window. This setup
allows a ball to traverse the scene from one side to the other.
The ball becomes occluded when behind the wall, emerges
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)
<latexit sha1_base64="VEESghgsSLKF9T3QwBtgrqrjEWI=">AAAB8nicbZDLSgMxFIYzXut4q7p0EyyCqzJTF7oRi25cVrEXaIeSSTNtaCYZkjNKGfoYblwo0q3v4d6N+Daml4W2/hD4+P9zyDknTAQ34HnfztLyyuraem7D3dza3tnN7+3XjEo1ZVWqhNKNkBgmuGRV4CBYI9GMxKFg9bB/Pc7rD0wbruQ9DBIWxKQrecQpAWs1W3e82wOitXps5wte0ZsIL4I/g8Llh3uRjL7cSjv/2eoomsZMAhXEmKbvJRBkRAOngg3dVmpYQmifdFnToiQxM0E2GXmIj63TwZHS9knAE/d3R0ZiYwZxaCtjAj0zn43N/7JmCtF5kHGZpMAknX4UpQKDwuP9cYdrRkEMLBCquZ0V0x7RhIK9kmuP4M+vvAi1UtE/LZZuvUL5Ck2VQ4foCJ0gH52hMrpBFVRFFCn0hF7QqwPOs/PmjKalS86s5wD9kfP+A/HwlK4=</latexit>

)
<latexit sha1_base64="VEESghgsSLKF9T3QwBtgrqrjEWI=">AAAB8nicbZDLSgMxFIYzXut4q7p0EyyCqzJTF7oRi25cVrEXaIeSSTNtaCYZkjNKGfoYblwo0q3v4d6N+Daml4W2/hD4+P9zyDknTAQ34HnfztLyyuraem7D3dza3tnN7+3XjEo1ZVWqhNKNkBgmuGRV4CBYI9GMxKFg9bB/Pc7rD0wbruQ9DBIWxKQrecQpAWs1W3e82wOitXps5wte0ZsIL4I/g8Llh3uRjL7cSjv/2eoomsZMAhXEmKbvJRBkRAOngg3dVmpYQmifdFnToiQxM0E2GXmIj63TwZHS9knAE/d3R0ZiYwZxaCtjAj0zn43N/7JmCtF5kHGZpMAknX4UpQKDwuP9cYdrRkEMLBCquZ0V0x7RhIK9kmuP4M+vvAi1UtE/LZZuvUL5Ck2VQ4foCJ0gH52hMrpBFVRFFCn0hF7QqwPOs/PmjKalS86s5wD9kfP+A/HwlK4=</latexit>

z̃0
1:K

<latexit sha1_base64="3SU/yotQXIJw3wuN8TaHq1Vuloc=">AAAB+nicbVDLSsNAFJ3UV62vVJduhhahq5LURcVV0Y3gpoJ9QFvDZDJph04mYWai1JgvETcuFHHrT7h1J/oxTh8LbT1w4XDOvdx7jxsxKpVlfRqZpeWV1bXsem5jc2t7x8zvNmUYC0waOGShaLtIEkY5aSiqGGlHgqDAZaTlDk/HfuuaCElDfqlGEekFqM+pTzFSWnLMfFdR5pHkNr2ynMQ+Pk8ds2iVrQngIrFnpFgrlL6/qu/3dcf86HohjgPCFWZIyo5tRaqXIKEoZiTNdWNJIoSHqE86mnIUENlLJqen8EArHvRDoYsrOFF/TyQokHIUuLozQGog572x+J/XiZV/1Esoj2JFOJ4u8mMGVQjHOUCPCoIVG2mCsKD6VogHSCCsdFo5HYI9//IiaVbK9mG5cqHTOAFTZME+KIASsEEV1MAZqIMGwOAGPIAn8GzcGY/Gi/E6bc0Ys5k98AfG2w8wNJes</latexit>

z̃1
1:K

<latexit sha1_base64="g2+J1sVClZ0uXLJP2JtYPb3XQ2I=">AAAB+nicbVDLSsNAFJ3UV62vVJduhhahq5LURcVV0Y3gpoJ9QFvDZDJph04mYWai1JgvETcuFHHrT7h1J/oxTh8LbT1w4XDOvdx7jxsxKpVlfRqZpeWV1bXsem5jc2t7x8zvNmUYC0waOGShaLtIEkY5aSiqGGlHgqDAZaTlDk/HfuuaCElDfqlGEekFqM+pTzFSWnLMfFdR5pHkNr2yncQ+Pk8ds2iVrQngIrFnpFgrlL6/qu/3dcf86HohjgPCFWZIyo5tRaqXIKEoZiTNdWNJIoSHqE86mnIUENlLJqen8EArHvRDoYsrOFF/TyQokHIUuLozQGog572x+J/XiZV/1Esoj2JFOJ4u8mMGVQjHOUCPCoIVG2mCsKD6VogHSCCsdFo5HYI9//IiaVbK9mG5cqHTOAFTZME+KIASsEEV1MAZqIMGwOAGPIAn8GzcGY/Gi/E6bc0Ys5k98AfG2w8xvpet</latexit>

z̃T
1:K

<latexit sha1_base64="wmaNDrSbQFHlJpoeujLnt0/LA6g=">AAAB+nicbVDLSsNAFJ3UV62vVJduhhahq5LURcVV0Y3gpkJf0NYwmUzaoZNJmJkoNeZLxI0LRdz6E27diX6M08dCqwcuHM65l3vvcSNGpbKsDyOztLyyupZdz21sbm3vmPndlgxjgUkThywUHRdJwignTUUVI51IEBS4jLTd0enEb18RIWnIG2ockX6ABpz6FCOlJcfM9xRlHklu0suGk9jH56ljFq2yNQX8S+w5KdYKpa/P6ttd3THfe16I44BwhRmSsmtbkeonSCiKGUlzvViSCOERGpCuphwFRPaT6ekpPNCKB/1Q6OIKTtWfEwkKpBwHru4MkBrKRW8i/ud1Y+Uf9RPKo1gRjmeL/JhBFcJJDtCjgmDFxpogLKi+FeIhEggrnVZOh2AvvvyXtCpl+7BcudBpnIAZsmAfFEAJ2KAKauAM1EETYHAN7sEjeDJujQfj2XiZtWaM+cwe+AXj9RtnnJfQ</latexit>

)

<latexit sha1_base64="TzVRd7+lKohuUp/6XylO5uGKt9M=">AAAB7nicbVDLSsNAFL2pr1pfVZeCDBbBVUnahS5LC+Kygn1AE8pkOkmHTiZhZiKU0I9wY0ERt36PO7d+idPHQlsPXDiccy/33uMnnClt219WbmNza3snv1vY2z84PCoen7RVnEpCWyTmsez6WFHOBG1ppjntJpLiyOe0448aM7/zSKVisXjQ44R6EQ4FCxjB2kgdt87C0J30iyW7bM+B1omzJKXa7fT8u9GeNvvFT3cQkzSiQhOOleo5dqK9DEvNCKeTgpsqmmAywiHtGSpwRJWXzc+doEujDFAQS1NCo7n6eyLDkVLjyDedEdZDterNxP+8XqqDGy9jIkk1FWSxKEg50jGa/Y4GTFKi+dgQTCQztyIyxBITbRIqmBCc1ZfXSbtSdqrlyr1Jow4L5OEMLuAKHLiGGtxBE1pAYARP8AKvVmI9W2/W+6I1Zy1nTuEPrI8flXOSuw==</latexit>

Interaction
Dynamic

Reasoning

· · ·<latexit sha1_base64="HizBLF/eww/NXksVAtI5HCWfU4M=">AAAB7XicbZC7SgNBFIZn4y2ut6ilzWAQrMJuLLQRgzaWEcwFkiXMzs4mY2ZnlpmzQgh5BxsLRWwsfBR7G/FtnFwKTfxh4OP/z2HOOWEquAHP+3ZyS8srq2v5dXdjc2t7p7C7Vzcq05TVqBJKN0NimOCS1YCDYM1UM5KEgjXC/tU4b9wzbbiStzBIWZCQruQxpwSsVW/TSIHpFIpeyZsIL4I/g+LFh3uevn251U7hsx0pmiVMAhXEmJbvpRAMiQZOBRu57cywlNA+6bKWRUkSZoLhZNoRPrJOhGOl7ZOAJ+7vjiFJjBkkoa1MCPTMfDY2/8taGcRnwZDLNAMm6fSjOBMYFB6vjiOuGQUxsECo5nZWTHtEEwr2QK49gj+/8iLUyyX/pFS+8YqVSzRVHh2gQ3SMfHSKKugaVVENUXSHHtATenaU8+i8OK/T0pwz69lHf+S8/wAPO5Jw</latexit>

Decoder
backpropagation

L(z̃t+1
1:K , ẑt+1

1:K)
<latexit sha1_base64="y9/QARk1RZO7lc3hvycsCEIg3ts="></latexit>

ẑt+1
1:K<latexit sha1_base64="En1ILaOy1angjSVoceJRxrhQBKU=">AAAB/HicbVDLSsNAFJ1YH7W+ol26CZaCIJSkLhRXRTeCmwr2AW0Mk+mkHTp5MHMjxBB3focbQUXc+iHuxKU/4vSx0NYDFw7n3Mu997gRZxJM81NbyC0uLa/kVwtr6xubW/r2TlOGsSC0QUIeiraLJeUsoA1gwGk7EhT7Lqctd3g28ls3VEgWBleQRNT2cT9gHiMYlOToxe4AQ3qbXadwYGVOap1cZI5eMivmGMY8saakVCvf56zvp6+6o390eyGJfRoA4VjKjmVGYKdYACOcZoVuLGmEyRD3aUfRAPtU2un4+MwoK6VneKFQFYAxVn9PpNiXMvFd1eljGMhZbyT+53Vi8I7tlAVRDDQgk0VezA0IjVESRo8JSoAnimAimLrVIAMsMAGVV0GFYM2+PE+a1Yp1WKleqjRO0QR5tIv20D6y0BGqoXNURw1EUIIe0DN60e60R+1Ve5u0LmjTmSL6A+39BzdPmCo=</latexit>

x̂0
<latexit sha1_base64="cMv0qsZqxdDPoMCdz6uNlOk1Hlk=">AAAB8HicbZDLSgMxFIYz9VbHW9Wlm2ARXJWZutCNWHTjsoK9SDuWTJq2oUlmSM6IZehTuHGhiLjzRdy7Ed/G9LLQ1h8CH/9/DjnnhLHgBjzv28ksLC4tr2RX3bX1jc2t3PZO1USJpqxCIxHpekgME1yxCnAQrB5rRmQoWC3sX4zy2h3ThkfqGgYxCyTpKt7hlIC1bpo9Aun98NZr5fJewRsLz4M/hfzZh3sav3255Vbus9mOaCKZAiqIMQ3fiyFIiQZOBRu6zcSwmNA+6bKGRUUkM0E6HniID6zTxp1I26cAj93fHSmRxgxkaCslgZ6ZzUbmf1kjgc5JkHIVJ8AUnXzUSQSGCI+2x22uGQUxsECo5nZWTHtEEwr2Rq49gj+78jxUiwX/qFC88vKlczRRFu2hfXSIfHSMSugSlVEFUSTRA3pCz452Hp0X53VSmnGmPbvoj5z3Hzi5k6w=</latexit>

x̂1
<latexit sha1_base64="9osmn38jo4Sgh3XE57yPb5c3wPs=">AAAB8HicbZDLSgMxFIYz9VbHW9Wlm2ARXJWZutCNWHTjsoK9SDuWTJq2oUlmSM6IZehTuHGhiLjzRdy7Ed/G9LLQ1h8CH/9/DjnnhLHgBjzv28ksLC4tr2RX3bX1jc2t3PZO1USJpqxCIxHpekgME1yxCnAQrB5rRmQoWC3sX4zy2h3ThkfqGgYxCyTpKt7hlIC1bpo9Aun98NZv5fJewRsLz4M/hfzZh3sav3255Vbus9mOaCKZAiqIMQ3fiyFIiQZOBRu6zcSwmNA+6bKGRUUkM0E6HniID6zTxp1I26cAj93fHSmRxgxkaCslgZ6ZzUbmf1kjgc5JkHIVJ8AUnXzUSQSGCI+2x22uGQUxsECo5nZWTHtEEwr2Rq49gj+78jxUiwX/qFC88vKlczRRFu2hfXSIfHSMSugSlVEFUSTRA3pCz452Hp0X53VSmnGmPbvoj5z3Hzo9k60=</latexit>

x̂2
<latexit sha1_base64="T6evEuy9pCGA9oEXDfmrC7Mqe20=">AAAB8HicbZDLSgMxFIbP1Fsdb1WXboJFcFVm6kI3YtGNywr2Im0tmTTThiaZIcmIZehTuHGhiLjzRdy7Ed/G9LLQ1h8CH/9/DjnnBDFn2njet5NZWFxaXsmuumvrG5tbue2dqo4SRWiFRDxS9QBrypmkFcMMp/VYUSwCTmtB/2KU1+6o0iyS12YQ05bAXclCRrCx1k2zh016P7wttnN5r+CNhebBn0L+7MM9jd++3HI799nsRCQRVBrCsdYN34tNK8XKMMLp0G0mmsaY9HGXNixKLKhupeOBh+jAOh0URso+adDY/d2RYqH1QAS2UmDT07PZyPwvayQmPGmlTMaJoZJMPgoTjkyERtujDlOUGD6wgIlidlZEelhhYuyNXHsEf3bleagWC/5RoXjl5UvnMFEW9mAfDsGHYyjBJZShAgQEPMATPDvKeXRenNdJacaZ9uzCHznvPzvBk64=</latexit>

x̂t+1
<latexit sha1_base64="ZATFnh9S3li0v7HJfsAabAjEgEg=">AAAB9HicbVDLSgNBEJyNr7i+oh69DAZBEMJuPOhFDHrxGME8IFnD7GSSDJmdXWd6g2HZ7/DiQQle/Q3vXsS/cfI4aGJBQ1HVTXeXHwmuwXG+rczS8srqWnbd3tjc2t7J7e5VdRgryio0FKGq+0QzwSWrAAfB6pFiJPAFq/n967FfGzCleSjvYBgxLyBdyTucEjCS1+wRSB7T+wRO3LSVyzsFZwK8SNwZyV9+2BfR6Msut3KfzXZI44BJoIJo3XCdCLyEKOBUsNRuxppFhPZJlzUMlSRg2ksmR6f4yCht3AmVKQl4ov6eSEig9TDwTWdAoKfnvbH4n9eIoXPuJVxGMTBJp4s6scAQ4nECuM0VoyCGhhCquLkV0x5RhILJyTYhuPMvL5JqseCeFoq3Tr50habIogN0iI6Ri85QCd2gMqogih7QE3pBr9bAerZG1tu0NWPNZvbRH1jvP0iNlWw=</latexit>

xt+1
<latexit sha1_base64="W7VxjDuw71T+z1GOGrl1UEgIUao=">AAAB8HicbZDLSsNAFIYn9VbjrerSzWARBKEkdaEbsejGZQV7kRrLZDpph84kYeZELCFP4caFIuLOF3HvRnwbp5eFtv4w8PH/5zDnHD8WXIPjfFu5ufmFxaX8sr2yura+UdjcqusoUZTVaCQi1fSJZoKHrAYcBGvGihHpC9bw++fDvHHHlOZReAWDmHmSdEMecErAWNfpfXabwoGbtQtFp+SMhGfBnUDx9MM+id++7Gq78HnTiWgiWQhUEK1brhODlxIFnAqW2TeJZjGhfdJlLYMhkUx76WjgDO8Zp4ODSJkXAh65vztSIrUeSN9USgI9PZ0Nzf+yVgLBsZfyME6AhXT8UZAIDBEebo87XDEKYmCAUMXNrJj2iCIUzI1scwR3euVZqJdL7mGpfOkUK2dorDzaQbtoH7noCFXQBaqiGqJIogf0hJ4tZT1aL9bruDRnTXq20R9Z7z83+pOr</latexit>

x2
<latexit sha1_base64="hyTuxrSypDXjN2G5PxObfz/EO5E=">AAAB7nicbZC7SgNBFIbPeo3rLWppMxgEq7AbC23EoI1lBHOBZA2zk9lkyOzsMDMrhiUPYWOhiIWNb2JvI76Nk0uhiT8MfPz/Ocw5J5ScaeN5387C4tLyympuzV3f2Nzazu/s1nSSKkKrJOGJaoRYU84ErRpmOG1IRXEccloP+5ejvH5HlWaJuDEDSYMYdwWLGMHGWvXsfniblYbtfMEremOhefCnUDj/cM/k25dbaec/W52EpDEVhnCsddP3pAkyrAwjnA7dVqqpxKSPu7RpUeCY6iAbjztEh9bpoChR9gmDxu7vjgzHWg/i0FbG2PT0bDYy/8uaqYlOg4wJmRoqyOSjKOXIJGi0O+owRYnhAwuYKGZnRaSHFSbGXsi1R/BnV56HWqnoHxdL116hfAET5WAfDuAIfDiBMlxBBapAoA8P8ATPjnQenRfndVK64Ex79uCPnPcf+D+S+Q==</latexit>

x1
<latexit sha1_base64="RXFSUlWqo7Whf/Bp0+C4QFwjI1w=">AAAB7nicbZC7SgNBFIbPeo3rLWppMxgEq7AbC23EoI1lBHOBZA2zk9lkyOzsMDMrhiUPYWOhiIWNb2JvI76Nk0uhiT8MfPz/Ocw5J5ScaeN5387C4tLyympuzV3f2Nzazu/s1nSSKkKrJOGJaoRYU84ErRpmOG1IRXEccloP+5ejvH5HlWaJuDEDSYMYdwWLGMHGWvXsfnib+cN2vuAVvbHQPPhTKJx/uGfy7cuttPOfrU5C0pgKQzjWuul70gQZVoYRToduK9VUYtLHXdq0KHBMdZCNxx2iQ+t0UJQo+4RBY/d3R4ZjrQdxaCtjbHp6NhuZ/2XN1ESnQcaETA0VZPJRlHJkEjTaHXWYosTwgQVMFLOzItLDChNjL+TaI/izK89DrVT0j4ula69QvoCJcrAPB3AEPpxAGa6gAlUg0IcHeIJnRzqPzovzOildcKY9e/BHzvsP9rqS+A==</latexit>

x0
<latexit sha1_base64="vRw+mAQuiUYoQ8dRcUfw1bXw2Vk=">AAAB7nicbZC7SgNBFIbPeo3rLWppMxgEq7AbC23EoI1lBHOBZA2zk9lkyOzsMDMrhiUPYWOhiIWNb2JvI76Nk0uhiT8MfPz/Ocw5J5ScaeN5387C4tLyympuzV3f2Nzazu/s1nSSKkKrJOGJaoRYU84ErRpmOG1IRXEccloP+5ejvH5HlWaJuDEDSYMYdwWLGMHGWvXsfnibecN2vuAVvbHQPPhTKJx/uGfy7cuttPOfrU5C0pgKQzjWuul70gQZVoYRToduK9VUYtLHXdq0KHBMdZCNxx2iQ+t0UJQo+4RBY/d3R4ZjrQdxaCtjbHp6NhuZ/2XN1ESnQcaETA0VZPJRlHJkEjTaHXWYosTwgQVMFLOzItLDChNjL+TaI/izK89DrVT0j4ula69QvoCJcrAPB3AEPpxAGa6gAlUg0IcHeIJnRzqPzovzOildcKY9e/BHzvsP9TWS9w==</latexit>

...<latexit sha1_base64="7t24ksjV8fObpViH8enJRBZbKaQ=">AAAB7XicbZC7SgNBFIbPeo3rLWppMxgEq7AbC23EoI1lBHOBZAmzs5NkzOzMMjMbCEvewcZCERsLH8XeRnwbJ5dCE38Y+Pj/c5hzTphwpo3nfTtLyyura+u5DXdza3tnN7+3X9MyVYRWieRSNUKsKWeCVg0znDYSRXEccloP+9fjvD6gSjMp7swwoUGMu4J1GMHGWrXWIJJGt/MFr+hNhBbBn0Hh8sO9SN6+3Eo7/9mKJEljKgzhWOum7yUmyLAyjHA6cluppgkmfdylTYsCx1QH2WTaETq2ToQ6UtknDJq4vzsyHGs9jENbGWPT0/PZ2Pwva6amcx5kTCSpoYJMP+qkHBmJxqujiClKDB9awEQxOysiPawwMfZArj2CP7/yItRKRf+0WLr1CuUrmCoHh3AEJ+DDGZThBipQBQL38ABP8OxI59F5cV6npUvOrOcA/sh5/wEsU5KD</latexit>

...<latexit sha1_base64="7t24ksjV8fObpViH8enJRBZbKaQ=">AAAB7XicbZC7SgNBFIbPeo3rLWppMxgEq7AbC23EoI1lBHOBZAmzs5NkzOzMMjMbCEvewcZCERsLH8XeRnwbJ5dCE38Y+Pj/c5hzTphwpo3nfTtLyyura+u5DXdza3tnN7+3X9MyVYRWieRSNUKsKWeCVg0znDYSRXEccloP+9fjvD6gSjMp7swwoUGMu4J1GMHGWrXWIJJGt/MFr+hNhBbBn0Hh8sO9SN6+3Eo7/9mKJEljKgzhWOum7yUmyLAyjHA6cluppgkmfdylTYsCx1QH2WTaETq2ToQ6UtknDJq4vzsyHGs9jENbGWPT0/PZ2Pwva6amcx5kTCSpoYJMP+qkHBmJxqujiClKDB9awEQxOysiPawwMfZArj2CP7/yItRKRf+0WLr1CuUrmCoHh3AEJ+DDGZThBipQBQL38ABP8OxI59F5cV6npUvOrOcA/sh5/wEsU5KD</latexit>

Perception module Reasoning Dynamics Explanation

...
<latexit sha1_base64="7t24ksjV8fObpViH8enJRBZbKaQ=">AAAB7XicbZC7SgNBFIbPeo3rLWppMxgEq7AbC23EoI1lBHOBZAmzs5NkzOzMMjMbCEvewcZCERsLH8XeRnwbJ5dCE38Y+Pj/c5hzTphwpo3nfTtLyyura+u5DXdza3tnN7+3X9MyVYRWieRSNUKsKWeCVg0znDYSRXEccloP+9fjvD6gSjMp7swwoUGMu4J1GMHGWrXWIJJGt/MFr+hNhBbBn0Hh8sO9SN6+3Eo7/9mKJEljKgzhWOum7yUmyLAyjHA6cluppgkmfdylTYsCx1QH2WTaETq2ToQ6UtknDJq4vzsyHGs9jENbGWPT0/PZ2Pwva6amcx5kTCSpoYJMP+qkHBmJxqujiClKDB9awEQxOysiPawwMfZArj2CP7/yItRKRf+0WLr1CuUrmCoHh3AEJ+DDGZThBipQBQL38ABP8OxI59F5cV6npUvOrOcA/sh5/wEsU5KD</latexit>

...
<latexit sha1_base64="7t24ksjV8fObpViH8enJRBZbKaQ=">AAAB7XicbZC7SgNBFIbPeo3rLWppMxgEq7AbC23EoI1lBHOBZAmzs5NkzOzMMjMbCEvewcZCERsLH8XeRnwbJ5dCE38Y+Pj/c5hzTphwpo3nfTtLyyura+u5DXdza3tnN7+3X9MyVYRWieRSNUKsKWeCVg0znDYSRXEccloP+9fjvD6gSjMp7swwoUGMu4J1GMHGWrXWIJJGt/MFr+hNhBbBn0Hh8sO9SN6+3Eo7/9mKJEljKgzhWOum7yUmyLAyjHA6cluppgkmfdylTYsCx1QH2WTaETq2ToQ6UtknDJq4vzsyHGs9jENbGWPT0/PZ2Pwva6amcx5kTCSpoYJMP+qkHBmJxqujiClKDB9awEQxOysiPawwMfZArj2CP7/yItRKRf+0WLr1CuUrmCoHh3AEJ+DDGZThBipQBQL38ABP8OxI59F5cV6npUvOrOcA/sh5/wEsU5KD</latexit>

...
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Figure 3: Overview of the XPL model for explanation-based physics learning. The model comprises three key modules: (i) the perception
module, responsible for extracting object-centric representation from RGBD videos and segmentation masks; (ii) the reasoning module,
utilizing two Transformer networks to infer representations of occluded objects; (iii) the dynamics module, which acquires intuitive physical
knowledge and refines reasoning outcomes to align with intuitive physics. Additionally, the inferred object representation can be visualized
using the decoder from the perception module, offering a visual explanation of events occurring behind the wall. Wavy curves indicate
masking. Refer to the text for comprehensive details.

through the window, disappears, and subsequently reappears
from the opposite end. The three distinct settings mirror the
collision and blocking scenarios. The differentiation between
plausible and implausible scenes revolves around whether
the ball remains visible upon passing through the window.
In the predictive setting (S1), all relevant information is
presented at the video’s outset and conclusion, negating the
presence of hidden objects. In the hypothetical setting (S2),
information is deliberately withheld from the video’s start
and finish, necessitating the model’s performance to align
with infants [1], which involves explaining the existence of
two balls. In the explicative setting (S3), the wall is lifted,
verifying the absence of an additional ball behind the wall.

3.2. Training data

Though we do not impose constraints on the training
data, for this study, we generate data adhering to the same
structure as the test scenarios but without VoE effects. As
shown in Fig. 4, the training set consists of 100,000 proce-
durally generated scenes, closely mirroring the scale used
for training PLATO [30]. During training, we exclusively
present videos following intuitive physics laws, raising the
wall at the beginning and end of each video. This approach
reduces reasoning complexity, simulating the developmen-
tal process where only non-surprising physical events are
observed. Consequently, models must unsupervisedly learn
from video sequences depicting ordinary scenes, developing
intuitive physics understanding necessary for VoE. Further-
more, for the collision and blocking scenarios, we create
videos depicting balls passing through walls without colli-
sion or obstruction, demonstrating the unimpeded path be-
hind the wall as shown in Fig. 4(a). We also generate scenes

similar to the previously described settings but devoid of
occlusion walls.

4. eXplanation-based Physics Learner (XPL)
4.1. Framework

Our proposed eXplanation-based Physics Learner (XPL)
model draws inspiration from developmental psychology
theories concerning infancy. As depicted in Fig. 3, the XPL
model comprises three key components: (1) a perception
module responsible for extracting object-centric represen-
tations to facilitate downstream processing, (2) a reasoning
module tasked with inferring occluded object states by con-
sidering both spatial and temporal contexts, and (3) a dy-
namics module designed to acquire physical insights and
evaluate inference outcomes for occluded objects.

Perception The perception module is designed to
process input RGBD video sequences, represented as
xx0, x1, ..., xT y, alongside their corresponding segmenta-
tion masks, denoted as xm0,m1, ...,mT y. The masks are
generated using a pre-trained segmentation model. Notably,
the simplicity of the scenes allows for direct use of ground
truth segmentation, as observed in PLATO [30]. For each
frame, the perception module employs a Component Vari-
ational Autoencoder (Component VAE) [7] to transform
each input image into a concealed vector representation
xz01:K , z11:K , ..., zT1:Ky, where K represents the object count
per frame.

Reasoning The reasoning module leverages the object
embeddings obtained from the perception module as input
and endeavors to enhance scene comprehension by inferring
the attributes of occluded objects, whose masks remain va-



Figure 4: Training scenarios for X-VoE. The timeline progresses from left to right, where each row represents the control, collision,
blocking, object permanence, and object continuity groups from top to bottom. Please refer to Appx. A.2 for additional details.

cant due to occlusion. This aspect employs two Transformer
models to refine object embeddings and recover hidden ob-
jects. Both Transformers adopt flattened spatial-temporal
embeddings and apply global attention mechanisms to con-
textualize information. The first Transformer refines input
features of occluded objects to align with a learned dynamics
module, producing z̃. The second Transformer is responsible
for recuperating objects concealed within observation se-
quences of both original and refined features. It’s important
to note that object recovery mirrors Masked Autoencod-
ing [17], treating a random object as absent and necessitat-
ing reconstruction from contextual cues. Drawing from these
observations, we train the second Transformer similarly to
Masked Autoencoders (MAE).

Dynamics The dynamics module predicts object em-
beddings ẑt`1

1:K in the succeeding frame based on the preced-
ing frame’s refined object embeddings z̃1:t1:K . This involves
employing the interaction dynamics module introduced in

PLATO [30], supplemented by a residual module. Unlike
PLATO, we employ object embeddings subsequent to the
reasoning module and jointly train the modules.

4.2. Model training

Initially, we pre-train the perception module to equip
the system with foundational visual capabilities. Precisely,
the perception module undergoes pre-training using RGBD
images and segmentation masks. Throughout this phase,
we segment objects and employ masked images for VAE
training. During image reconstruction, depth information
assists in calculating object mask details.

We then train one Transformer and the dynamics module,
with latent codes frozen from the perception module, in an
end-to-end manner employing the following loss:

z̃ “ finfpzq

L “
›

›fdynpz̃0:t1:Kq ´ z̃t`1
1:K

›

›

2
, (1)
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Figure 5: (a) Performance of different models on X-VoE under the holistic metric. The red line denotes the ideal performance. (b) PCA
with or without residual connection. The first ten principal components are shown. (c) Results from each score component.

Here, the Transformer employs the architecture featured in
Aloe [12] (finfp¨q), while the dynamics prediction module
aligns with PLATO [30] (fdynp¨q). The second Transformer
is trained independently using MAE.

5. Experiments

In this section, we thoroughly evaluate the performance
of XPL using our X-VoE dataset across different experimen-
tal configurations: predicting future phenomena (predictive
setup), interpreting existing phenomena (hypothetical setup),
and understanding past occurrences given future conditions
(explicative setup). We compare XPL against PhyDNet [16],
a video prediction model, and PLATO [30] in our X-VoE
dataset. These models are evaluated under two different met-
rics.

5.1. Defining accuracy and surprise

Before delving into different evaluative configurations,
we first introduce how accuracy and surprise are formally
defined.

In developmental psychology experiments on VoE, a sur-
prise was defined by comparing infants’ responses to normal
scenes with those that violate expectations. Similar to ex-
isting works [35], we borrow the idea and define the model
accuracy as the relative scores between two videos, one that
violates intuitive physics laws and another that does not:

Accuracy “
1

N

ÿ

1rsnor ă ssurs, (2)

where N denotes the total number of such pairs, and snor
and ssur are scores of a normal physics video and one that
violates physics, respectively. The scores are computed as the
sum of the difference between the inferred results from the
observation and that from the dynamics module’s prediction,
i.e.,

s “ simg ` sdyn, (3)

where

simg “

T
ÿ

t“1

ℓpIt,
ÿ

i

fdecpz̃tiqq, (4)

and

sdyn “

T
ÿ

t“2

ℓp
ÿ

i

fdecpz̃tiq, fdecpfdynpz̃0:t´1
1:K qq. (5)

Here, fdecp¨q denotes the learned decoder in our VAE, and
we use MSE loss for ℓp¨q.

5.2. The holistic metric

Similar to Smith et al. [35], we adopt the holistic metric
to evaluate VoE effects in all pairs of unexpected and normal
event videos. Ideally, an intuitive physics model should pro-
duce higher surprise scores for unexpected events. Formally,
the holistic metric is defined as such,

1

nsnc

ÿ

i,j

1rspx`
i q ą spx´

j qs, (6)

where x`
i and x´

j denote the unexpected and normal videos
and ns and nc are the number of unexpected and normal
videos. This metric aggregates results from all confounding
factors, including interference from colors, shapes, scene
complexity, etc. Therefore, it provides a holistic view of
models’ understanding of intuitive physics events; models
need to judge the unexpectedness of outcomes from the intu-
itive physics perspective, disentangling all other confounding
factors.

As shown in Fig. 5 (a), we measure the holistic value on
different models on X-VoE. Both XPL and PLATO show
better performance in all four testing scenarios, though with
a notable gap from perfection. XPL is significantly better
than PLATO in the collision, blocking, and permanence, but
less so in continuity. We also compare different dynamic
modules, with or without residual, in XPL. The results show
that the residual connection in the dynamics module plays
a critical role in our system, as evidenced by results for
collision and blocking. An in-depth analysis from Principal
Component Analysis (PCA) in Fig. 5 (b) shows that after
adding the residual connection, the standard deviation in dif-
ferent principal components is particularly reduced, making
learning easier.

To investigate the contribution of each of the two surprise
components in Eq. (3), we compute the holistic metric from



Figure 6: Performance of different models on X-VoE under the comparative metric. The red line denotes the ideal performance. The
top part shows the absolute comparative values and the bottom part shows the difference from the ideal.

each of them separately. As shown in Fig. 5 (c), the perfor-
mance of sdyn is superior to that of simg in the collision and
blocking scenarios, whereas the performance of simg is better
in permanence and continuity. This result implies that the
violation of physical knowledge plays a more important role
in collision and blocking. In contrast, the mismatch from the
observation is a more crucial factor for permanence and con-
tinuity. Thus, the residuals in XPL, explicitly taking earlier
information into computation, could exert a greater influence
on the dynamic module and its impact in the collision and
blocking scenarios as shown in Fig. 5 (a).

The holistic metric only provides a global view of how a
model understands intuitive physics. To paint a more com-
plete landscape of a model, we look deeper into the compar-
ative metric in the next section.

5.3. The comparative metric

The comparative metric, similar to ones proposed in liter-
ature [32, 43], is calculated in a pair of the unexpected and
normal events within one specific setting in each scenario,

1

n

ÿ

i

1rspx`
i q ą spx´

i qs, (7)

where x`
i and x´

i are the two paired videos in each settings
and n is the number of such pairs. The comparative metric
is also most commonly used in evaluating infants’ intuitive
physics knowledge in developmental psychology [5, 23].

Whereas the holistic metric describes whether an obser-
vation sequence is absolutely surprising from a holistic per-
spective, the comparative metric assesses whether one ob-
servation sequence is more surprising than another from a
comparative perspective. Although the holistic metric pro-
vides an overall perspective, it lacks the detailed results of
the three specific cases the comparative metric provides; see
Fig. 1. In each scenario in X-VoE, the two videos in the

hypothetical setting are likely to occur, while only one of the
two videos in the predictive and explicative settings is likely
to occur. Therefore, the comparative metric in the hypothet-
ical setting should be ideally 50%, while the metric in the
predictive and explicative settings should be ideally 100%.

Fig. 6 shows the comparative values of different models.
The results in the predictive setting indicate that current AI
systems, even as simple as general video prediction, can
easily predict future outcomes accurately for such a simple
task. However, when it comes to the setting that requires
reasoning and explanation (i.e., explicative), only XPL can
consistently achieve over 50%. When common predictive
models can only predict future occurrences based on past
conditions, XPL can reason about the past conditions that
lead to the observation, a critical ability necessary for suc-
cessfully solving the explicative setting.

Of these, the hypothetical setting is where we notice the
most performance volatility. For the hypothetical setting,
both a random-answering human subject and an ideal human
subject with perfect understanding would reach 50% accu-
racy. However, this is exactly why this problem is intriguing
for psychologists. From this perspective, a model achieving
50% could mean it is either the worst or best. While in the
hypothetical setup, PhyDNet achieves nearly 50%, it can
only reach random-level performance in the explicative set-
ting, showing that the model does not understand different
possibilities behind the wall. This is why the explicative set-
ting is so important. The explicative setting provides more
new information in the video follow-up than the hypothetical
setting. As shown in Fig. 1, the new information will change
a possible scene to an impossible scene in the hypotheti-
cal setting. The metric gap between the hypothetical setting
and explicative setting shows the power of the explanatory
abilities. XPL demonstrates this property on both collision
and blocking scenarios, especially on the collision scenario,
where this gap reaches close to 90%.
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Figure 7: Training: Visualization of the internal representation in PLATO and XPL during training.

Although the XPL with or without a residual module both
have the reasoning module, they still have different explana-
tory abilities for hypothetical and explicative settings. In
collision and blocking tasks, residuals’ presence improves
the explicative but not the hypothetical setting. The residual
module enhances the connection between two consecutive
frames, allowing the reasoning module to better infer the
previous state based on the subsequent state. The main dif-
ference between the hypothetical and explicative setting is
the inclusion of follow-up information. In the explicative
setting, the presence of follow-up information enhances the
performance of the reasoning module (with residual module)
due to more subsequent state information. However, in the
hypothetical setting, the absence of follow-up information
negatively impacts the module’s performance.

Overall, XPL improves over previous state-of-the-art but
still fares worse on collision and continuity. While devel-
opmental psychology experiments have found the ability in
infants [1], it remains a challenge for AI systems.

5.4. Visualization results

The challenge of visual occlusion persists in computer
vision. Unless the ground-truth value is given directly, it is
difficult to characterize occluded objects by vision alone, es-
pecially in the case of complete occlusion. However, humans
can deduce occluded objects and corresponding physical
phenomena intuitively, even under complete occlusion. We
investigate whether XPL can reason about occluded objects
through visualization.

We visualize occluded objects within the learned repre-
sentation. Specifically, we mask the token associated with the
wall and decode the resulting features to assess the model’s
ability to reconstruct hidden objects. Training visualization
results are presented in Fig. 7. Notably, PLATO lacks a dedi-
cated reasoning module for occluded objects, resulting in an
inability to recover occluded factors. Conversely, XPL grad-
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Figure 8: Testing: Visualization of the inferred internal repre-
sentation in XPL during testing. This example corresponds to the
settings in Figure 1.

ually learns to infer the presence of occluded objects behind
the wall to explain observations. Crucially, we never provide
ground-truth occluded object representations during training,
emphasizing the importance of synchronized training of the
inference and dynamic modules. This approach allows XPL
to achieve improved occluded object restoration, though it
still falls short of ground-truth results (Fig. 7).

For test visualization, detailed results corresponding to
Fig. 1 are showcased in Fig. 8. The predictive setting demon-
strates XPL’s accurate reconstruction of observed objects.
In the hypothetical setting, XPL provides coherent explana-
tions involving hidden object interactions. In the explicative
setting, the occluder is lifted toward the end of the videos,
resulting in surprising outcomes.

To conclude, XPL proficiently reconstructs occluded ob-
jects and provides visual explanations for various events,
underscoring its capacity to reason about hidden factors in
the context of intuitive physics.



6. Conclusion and discussion
In this paper, we introduced X-VoE, a novel explanation-

based Violation of Expectation (VoE) dataset consisting of
four distinct scenarios, each encompassing three unique set-
tings: predictive, hypothetical, and explicative. While the
predictive setting aligns with conventional VoE tasks, the
other two settings focus on evaluating a model’s explana-
tory capacity. Our proposed XPL combines reasoning and
explanation processes to address occluded objects, offer-
ing enhanced performance within the X-VoE settings. Our
experiments revealed that XPL excels in scenarios requir-
ing explicit explanations for occluded objects, positioning it
ahead of other methodologies. Notably, the decoded repre-
sentation from XPL offers visual explanations for occluded
events, highlighting its ability to reason about hidden factors.

Our work underscores the pivotal role of explanations
in VoE tasks, particularly concerning occluded objects and
their contribution to video comprehension. Even when ob-
jects are obscured by walls, the possibility of underlying
physical events remains, and a model equipped with expla-
nation capabilities performs more adeptly in such situations.
The capacity to reason about occluded objects extends the
model’s scope beyond mere video prediction, enabling it to
capture intuitive physics principles more effectively.

However, certain challenges persist. Notably, XPL en-
counters difficulties in scenarios that demand high-level ex-
planations, such as the hypothetical setting in collision or
continuity (Fig. 6). These limitations underscore the need for
further advancements in the reasoning aspect of our model,
paving the way for future research. The ability to handle
complex interactions and provide meaningful explanations
remains a challenging aspect that requires careful considera-
tion in model design.

In conclusion, while our model’s reasoning capabilities
are still a work in progress, our study sheds light on the
integration of explanations into VoE tasks, aiming to de-
velop models with a level of intuitive physics comprehen-
sion akin to infants. The focus on occluded objects and their
explanatory potential broadens the scope of VoE tasks and
encourages the development of AI systems with deeper un-
derstanding.

6.1. Limitations

Method Despite its strengths, XPL faces certain lim-
itations. It struggles in some experiments, particularly the
hypothetical setting in collision or continuity (Fig. 6), where
its performance falls short of human-like comprehension.
Furthermore, our explanation process employs a basic Trans-
former module, lacking physics-related inductive biases that
could enhance performance. A promising direction for fu-
ture research lies in incorporating domain-specific inductive
biases that exploit physical principles to improve reasoning
and explanatory capabilities.

Accuracy metric Although our accuracy metrics draw
inspiration from developmental psychology experiments and
prior works, they rely on video comparisons to evaluate vio-
lations of intuitive physics. This approach, while effective,
assumes that one of the videos violates intuitive physics
laws, even if the difference in surprise values is marginal. As
a result, the method might struggle to achieve the desired
metrics in scenarios like the hypothetical setting. Exploring
metrics that focus on higher-level concepts and the detec-
tion of fundamental violations could yield insights into the
underlying mechanisms that drive these evaluations.

Dataset X-VoE pioneers the evaluation of physical ex-
planatory abilities in VoE tasks. However, our test scenarios
could be more diverse and comprehensive. Future efforts
will expand and diversify these scenarios to create a more ro-
bust framework for testing intuitive physics understanding in
VoE. By incorporating a wider range of physical phenomena
and interactions, future datasets can challenge AI systems
with greater complexity.

6.2. Future Directions

Future research should focus on refining XPL’s reason-
ing capabilities, enhancing its performance in scenarios de-
manding higher-order explanations. Introducing more so-
phisticated physics-based inductive biases could contribute
to better occluded object reasoning. Additionally, exploring
hybrid approaches that combine neural networks with sym-
bolic reasoning could lead to more advanced models with
enhanced explanatory capabilities.

Additionally, X-VoE can serve as a stepping stone for
designing more intricate and varied VoE scenarios. Incorpo-
rating more complex physical interactions, occlusions, and
multiple objects would lead to a richer and more challenging
testbed for evaluating AI systems’ intuitive physics com-
prehension. Diverse scenarios can provide comprehensive
evaluation of models’ understanding across a wide range of
intuitive physics principles.

In summary, our study provides insights into the integra-
tion of explanations in VoE tasks and sets the stage for future
advancements in both model design and dataset develop-
ment. The intersection of explanations and intuitive physics
comprehension holds promise for creating AI systems that
not only predict events but also understand the underlying
physical principles that govern them.
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[44] Dirk Weissenborn, Oscar Täckström, and Jakob Uszkoreit.
Scaling autoregressive video models. In International Con-
ference on Learning Representations (ICLR), 2020. 2

[45] Jiajun Wu, Erika Lu, Pushmeet Kohli, Bill Freeman, and
Josh Tenenbaum. Learning to see physics via visual de-
animation. In Advances in Neural Information Processing
Systems (NeurIPS), 2017. 2, 3



A. Dataset

A.1. Test data

For the VoE task, we divided the four scenarios into 11
groups, each with two comparison cases. The setups in the
testing data are very similar to the ones in the training data
except for the behavior of the wall. All scenarios except
Permanence contain predictive, hypothetical, and explicative
settings. The predictive and explicative settings contain both
plausible and implausible events, while the hypothetical set-
ting contains two plausible events. In the predictive setting,
the wall is moved away at the beginning and end of the video,
so all information is shown at the beginning and end of the
video. In the hypothetical setting, the wall always stays in
the middle of the scene. In the explicative setting, the wall is
moved away only at the end of the video, so new information
is shown to the model at the end of the video.

Collision The Collision scenario is shown in Fig. A1.
Collision contains predictive, hypothetical, and explicative
settings. In the predictive setting, the wall is moved away at
the beginning and end of the video, so two balls are visible
to the model. We can easily tell from intuitive physics that
the case in the first row is possible while the case in the
second row is not, because the red ball cannot pass through
the blue ball without collision. In the hypothetical setting,
the wall always stays in the middle of the scene, so we can
not tell how many balls there are in the scene. As we can not
infer if a blue ball is hidden behind the wall at the beginning
of the video, both cases in the setting are possible. In the
explicative setting, the wall is moved away at the end of the
video, so additional information is given. We can infer that a
blue ball must be hidden behind the wall, so the case in the
first row is possible, while the case in the second row is not.

Blocking The Blocking scenario is shown in Fig. A2.
The Blocking scenarios are similar to the Collision scenarios,
except that the ball hidden behind the wall is replaced by a
fixed cube. In the predictive setting, the wall is moved away
at the beginning and end of the video, so the cube is visible
to the model. Similar to Collision, we can easily tell that the
case in the first row is possible while the case in the second
row is not, because the blue ball can not pass through the
green cube without collision. In the hypothetical setting, the
wall always stays in the middle of the scene, so we can not
tell if there is a cube behind the wall. Therefore, both cases
in the setting are possible. In the explicative setting, the wall
is moved away at the end of the video, so we can infer that a
cube must be hidden behind the wall. Furthermore, we can
tell that the case in the first row is possible while the case in
the second row is not.

Permanence The Permanence scenario is shown in
Fig. A3. In the Permanence scenarios, three cubes are ran-
domly divided into two groups (allowing empty groups),
where cubes in the first group are dropped to the ground and

the second rest on the floor. We do not have an explicative
setting for this scenario, as there is no new evidence at the
end of the video. In the predictive setting, the wall is moved
away at the beginning of the video, so we can infer that there
is no object on the ground at the beginning. So the case in
the second row is impossible, while the case in the first row
is possible. In the hypothetical setting, the wall stays in the
middle of the scene at the beginning, so we can not tell if
there are cubes on the ground at the beginning, so both cases
are possible.

Continuity The Continuity scenario is shown in
Fig. A4. In the Continuity scenarios, we create a window
on the lower half of the wall. In the case of the wall, the
ball rolls across the scene. When the ball passes through the
wall, it can be seen going from one side to the other. In the
predictive setting, the wall is moved away at the beginning
of the video, so we can infer that only one ball is in the scene.
We can tell that the case in the second row is impossible
while the case in the first row is possible. In the hypothetical
setting, the wall always stays in the middle of the scene, and
we can easily infer that the case in the first row is possible.
Considering the case in the second row, we can not tell if
there are two balls with the same appearance in the scene,
one of which is visible at the beginning and the other one is
hidden by the right part of the wall. If that is true, the case in
the second row is also possible. So both cases are possible.
In the explicative setting, the wall is moved away at the end
of the video, so we can infer that there is only one ball in
the scene. Thus we can tell that the case in the first row is
possible while the case in the second row is not.

A.2. Train data

For four scenarios, we created 5 groups for training. Each
of Permanence and Continuity contains 1 group, while Col-
lision and Blocking in total contain 3 groups. Each group
contains 2 kinds of cases: cases with a wall and ones with-
out a wall. In the case with a wall, a movable wall stands
in the middle of the scene and will be moved away at the
beginning and the end of the video. In the case without the
wall, everything stays the same except that the wall does
not exist, showing that the wall won’t interact with other
objects physically. Each row in the Fig. 4 corresponds to one
sampled video in a specific case. See Fig. 4 for all training
groups.

Control group In the control group, a ball rolls across
the scene without interacting with other objects, indicating
that the environment follows basic physics.

Collision group A ball rolls across the scene in the
Collision scenario with the wall. Another ball with the same
mass but a different color is hidden behind the wall and will
collide with the incoming ball, causing the first ball to stop
and itself to pass through. In a setting without a wall, the
second ball will always be visible.



Blocking group The Blocking scenarios are similar to
the Collision scenario, except that the ball hidden behind
the wall is replaced by a fixed cube. A ball rolls across the
scene in the blocking setting with the wall. A fixed cube is
hidden behind the wall and will collide with the incoming
ball, causing the incoming ball to turn around. In the setting
without a wall, everything stays the same except that the wall
doesn’t exist, and the cube will always be visible.

Permanence group In the Permanence scenario, three
cubes are randomly divided into two groups (allowing empty
groups), where cubes in the first group are dropped to the
ground and the second rest on the floor. In the setting with
the wall, the wall will be moved away at the end of the video,
showing that all of the cubes still exist. In the setting without
the wall, the cubes will always be visible.

Continuity group In the Continuity scenario, we create
a window on the lower half of the wall. In the setting with
the wall, the ball rolls across the scene. When the ball passes
through the wall, it can be seen going from one side to the
other, especially visible from the window. In the setting
without the wall, the ball will always be visible.

A.3. Environment

Our X-VoE dataset comprises 22K+100K procedurally
generated scenes using Unreal Engine 4. In addition to the
floors and the backgrounds, there are four different object
types: balls, cubes, walls, and windowed walls. In all videos,
the size of the ball and the cube are the same, while the size
of the wall with or without windows are randomly different.
The positions of objects are randomly set in the videos, ex-
cept for the walls in the permanent scenes in which the wall
is placed in the middle. All objects, including the floor and
the background, are randomly set in different colors.

B. Model
B.1. Perception

The perception module in XPL is similar to that of Com-
ponent Variational Autoencoder (ComponentVAE) in the
PLATO model [30]. For each object k in an image, we take
as input a 128 × 128 RGBD (0-255 for each channel) image
xk that is masked except around the object. Then we use a
Vision Transformer [14] encoder Φ to encode the image with
only one object into a 32-dimensional Gaussian posterior
distribution qΦpzk|xkq. The sample from this distribution,
zk, is decoded by a spatial broadcast decoder [41] to an
RGBD image. To address occlusion, we use the depth of
the decoder image to combine all objects in the image by
multiplying them with softmaxed depth values. We first pre-
trained the perception module by optimizing the variational
objective defined in [7]. We set σ to 0.05, β to 0.5, and γ to
0 to ensure that the model reconstructs object masks without
segmentation information in the loss function.

ViT encoder We first reshape the 128 × 128 × 4 im-
ages into a sequence of flattened 16 × 16 × 256 patches,
followed by a linear layer with 256 dimensions. Next, we
add 2D position embeddings and learnable embeddings, flat-
ten, and send them to a Transformer. We use 8 multi-head, 32
key dimensions, 1024 MLP layer dimensions, and 6 Trans-
former layers for the Transformer model [39]. Finally, we
use an MLP layer with size [512, 64] and a leaky-ReLU
activation function to the Transformer output and obtain 32-
dimensional Gaussian posterior distributions for each object.

Spatial broadcast decoder Our spatial broadcast de-
coder is similar to that in [26]. As shown in Tab. A1, we use
position embeddings and CNN model to decode the object
embeddings, where the parameter θ in the softmax layer is
learnable, thus representing the mask in terms of depth.

B.2. Reasoning

In the reasoning module, we use two Transformer mod-
ules to reason the hidden object which is occluded in some
or all of the frames. All objects in a video can be reshaped
as F × N × D embeddings, where F is 15 frames, N is 8
objects, and D is 32 dimensions in our work. As shown in
Tab. A2, we use a Transformer model to reason the masked
objects in video, similar to the self-supervised learning mod-
ule in Aloe [12]; the parameter [M] in the Mask (1) part is
learnable.

First Transformer We set the mask to 0 for objects that
are temporally occluded in some frames, and 1 for others.
As shown in Tab. A2, we can use the Transformer model
to reason the new object embeddings whose mask equals 0.
We use it in both the training and testing steps to have better
object embedding for the whole video.

Second Transformer In our test dataset, there may be
cases where an object is obscured in all frames. So in the
training step, we set the mask to 0 for one random object
(including empty object) in all frames. Then we can train the
second Transformer model in a self-supervised manner. In
the test step, we set the mask to 0 for one object that is not
visible in all frames. Then we can reason about the occluded
object to explain the whole video.

B.3. Dynamics

In fact, the occluded objects are never directly seen for
the Transformer model. After the first reasoning module,
we obtain reasonable video object embeddings based on
experience. In the dynamics module, we predict the value of
the incremental change of the object embeddings in the time
step by using the same dynamics module from PLATO [30]
with the only difference in object dimension used (from 16
to 32). We refer the readers to [30] for architectural details.



Table A1: Spatial broadcast decoder architecture (from top to down).

Type Size Activation Comment

Spatial Broadcast 8 × 8 - -
Position Embedding - - -
Conv 5 × 5 64 ReLU stride: 2
Conv 5 × 5 64 ReLU stride: 2
Conv 5 × 5 64 ReLU stride: 2
Conv 5 × 5 64 ReLU stride: 2
Conv 5 × 5 64 ReLU stride: 1
Conv 3 × 3 4 - stride: 1
Channels RGBD(4) Softmax (on depth channel) softmax(depth × abs(θ) × -1000.0)

Table A2: The Transformer architecture (from top to down). The [M] is a learnable mask token for Transformer.

Type Size Activation Comment

LP (1) 256 - -
Mask (1) - × mask + [M] × (1-mask) mask : (size F × N × 1), (value 0 or 1)
Position Embedding - - -
Transformer 256, 256 (MLP) ReLU (MLP) head=8,key=32,layers=6
LP (2) 256 - -
Mask (2) - × (1-mask) + inputs × mask mask : (size F × N × 1), (value 0 or 1)

Table A3: Training parameters. The pre-processed video features are calculated by the Perception module, which is pre-trained.

Model batch size training step optimizer learning rate warm step delay step

Perception module (in XPL,PLATO) 300 (images) 472000 Adam 0.0004 2000 100000
XPL 500 (pre-processed video features) 32000 Adam 0.0004 1000 10000
PLATO 500 (pre-processed video features) 32000 Adam 0.0004 1000 10000
PhyDNet 100 (videos) 70000 Adam 0.001 - -

C. Training

C.1. Training detail

In a scene with occlusion, we cannot get the representa-
tion of the occluded object directly by observation. There-
fore, we first use the dynamics loss on the object embeddings
after the first Transformer to train our first Transformer and
dynamics model. Then, we use the object embeddings after
the first Transformer to train our second Transformer model.
We randomly mask an object throughout the video frame
and use the model to predict representations of the objects
throughout the video, enabling the model to infer whether
there is a fully hidden object in the test task.

C.2. Training parameters

We first pre-train the perception module and use it for both
PLATO and XPL. Then we train our model XPL, PLATO,
and PhyDNet with the parameters shown in Tab. A3.

C.3. Training steps

During the development of the model, we explored how
the size of the training dataset impacted the pixel loss of the
dynamics module. We use the expected video in the predic-
tive setting of all scenarios as the test dataset to calculate

the average pixel loss. Fig. A5 shows that more training data
will improve the performance of the dynamics module.

D. Visualize supplementary
In the main text, we visualize the reasoning results by our

XPL model in the Blocking scenario. Here, we visualize the
reasoning results for the rest of the scenarios.

D.1. Collision

As shown in Fig. A6, in the predictive setting, XPL has no
problem accurately reconstructing the objects, and the sur-
prise video can be found directly. In the hypothetical setting,
the possible explanation for the first video is that another
ball collides with the incoming ball. In contrast, no such ball
is in the second video, explaining both cases. This result
also shows the limitation of our XPL as the incoming ball
did not stop behind the wall. In the explicative setting, the
occluder is only moved away at the end of the videos. Unlike
the hypothetical, when showing a hidden ball behind it, it is
impossible for the ball to pass through, causing surprise.

D.2. Permanence

As shown in Fig. A7, in the predictive setting, XPL can
reconstruct the objects behind the wall, and the surprise



video can be found by comparing it with the origin image.
The visual effect of the reconstructed objects does not seem
to be very well, which is still a limitation of our XPL. In the
hypothetical setting, the possible explanation for the second
video is that there exists another object behind the wall, and
our XPL can reason about the object.

D.3. Continuity

As shown in Fig. A8, the visualization results of our XPL
are the same in all settings. Even though the visualization
results can show surprise in predictive and explicative set-
tings by comparing with the origin videos, our XPL still can
not deal with the hypothetical setting due to the limitation
discussed in the main text. Our XPL requires given masks
and identification of objects. Therefore, it can not reason
about the hypothetical setting in continuity by changing the
identification of objects and suggesting that there are two
same objects as infants do [1].



Figure A1: Collision test groups.

Figure A2: Blocking test groups.



Figure A3: Permanence test groups.

Figure A4: Continuity test groups.
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Figure A5: Average pixel loss of test data for different sizes of training data.
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Figure A6: Visualization of the inferred internal representation in XPL during testing in collision scenarios.



Perm. Origin XPL
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Figure A7: Visualization of the inferred internal representation in XPL during testing in permanence scenarios.

Cont. Origin XPL
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Figure A8: Visualization of the inferred internal representation in XPL during testing in continuity scenarios.


