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C O M P U T E R  S C I E N C E

Human-level few-shot concept induction through 
minimax entropy learning
Chi Zhang1*, Baoxiong Jia1, Yixin Zhu2*, Song-Chun Zhu1,2

Humans learn concepts both from labeled supervision and by unsupervised observation of patterns, a process 
machines are being taught to mimic by training on large annotated datasets—a method quite different from the 
human pathway, wherein few examples with no supervision suffice to induce an unfamiliar relational concept. We 
introduce a computational model designed to emulate human inductive reasoning on abstract reasoning tasks, 
such as those in IQ tests, using a minimax entropy approach. This method combines identifying the most effective 
constraints on data via minimum entropy with determining the best combination of them via maximum entropy. 
Our model, which applies this unsupervised technique, induces concepts from just one instance, reaching human-
level performance on tasks of Raven’s Progressive Matrices (RPM), Machine Number Sense (MNS), and Odd-One-
Out (O3). These results demonstrate the potential of minimax entropy learning for enabling machines to learn 
relational concepts efficiently with minimal input.

INTRODUCTION
Over the past several decades, artificial intelligence and machine 
learning have seen substantial advancements in perceptual tasks, 
provided they are supported by extensive, well-curated datasets. 
Despite these achievements, the domain of relational induction, 
which is fundamental to human intelligence (1–4), has not been 
thoroughly addressed. Humans have the unique ability to not only 
learn unfamiliar concepts through input-output pairings, akin to 
object recognition, but also to discern and induce unseen relation-
ships from observing a mere handful of examples. This capability 
is exemplified by human infants who can recognize patterns, such 
as the ABB structure in simple phrases like wo fe fe (5) and by 
older children who readily grasp conjunctive and disjunctive rela-
tions in causality (6). Even individuals from indigenous Amazo-
nian communities, who lack formal education, demonstrate the 
ability to solve complex geometric concept induction problems 
similar to those found in IQ tests (7). This faculty for relational 
concept induction, observed not only in humans but also in pri-
mates and avians (8–10), underscores its innate role in intelligence. 
The proficiency in such induction is often linked to intelligence 
levels, typically gauged by IQ scores (1, 3, 11, 12).

Recent computational efforts have sought to instill machines with 
inductive reasoning and enhance machine IQ through the examina-
tion of Raven’s Progressive Matrices (RPM), a widely recognized intel-
ligence test (13–17). However, prior approaches to these problems by 
machines markedly diverge from human methodologies: Humans 
can unsupervisedly infer and induce hidden relational concepts from 
a sparse array of examples and use this understanding to forecast sub-
sequent outcomes. In contrast, existing machine learning frame-
works, particularly those underpinned by deep learning, engage in 
the learning process supervisedly, correlating given contexts with 
their outcomes in the hope that the capability for induction will man-
ifest through the training on example pairs. Regrettably, such systems 
have yet to achieve the level of inductive reasoning routinely demon-
strated by humans (18–21).

A further critical distinction lies in the efficiency of induction 
between humans and machines. Humans are capable of inducing 
new concepts from a single contextual instance, while even the most 
advanced machines necessitate a vast quantity of paired instances 
for training to “induce” concepts. This discrepancy suggests that 
machine learning approaches might reduce induction to mere rote 
memorization, thus undermining the fundamental purpose of intel-
ligence testing.

The core questions for achieving human-like relational concept 
understanding remain to be answered: How do people induce an 
unfamiliar concept unsupervisedly by only observing event se-
quences? Further, how do people generate an unfamiliar concept to 
explain the observation from so few examples? The problems, when 
combined, prevent us from reaching human-level few-shot concept 
induction computationally. For any traditional approaches formu-
lating this problem as classification, feeding a model with extrava-
gant examples not only risks overfitting but also refutes the desirable 
learning efficiency. Notwithstanding, humans seem to take a unique 
approach to avoid the aforementioned issues when presented with 
similar problems, inducing unfamiliar concepts efficiently and un-
supervisedly.

To tackle these problems, we present a unified computational 
framework learned through minimax entropy to achieve relational 
concept induction and solve challenging abstract reasoning tasks in IQ 
tests with only a few context examples in a given instance (few-shot). 
Contrary to the conventional design in formulating concept induction 
as classification, we take a descriptive route (22) in modeling the prob-
lem. In our formulation, each instance is independently modeled via a 
different descriptive model—that is, an energy-based formulation in 
the Gibbs form as in Filters, RAndom fields and Maximum Entropy 
(FRAME) (23) and DeepFRAME (24, 25). Central to the descriptive 
route is modeling and learning of the potential function (exponent) in 
Gibbs’ exponential distribution. The potential function is usually real-
ized as the summation of multiple response functions, known as filters. 
Filter learning strategies have been actively studied in the literature: 
FRAME (23) starts with a finite set of filters and proceeds with a greedy 
approach in filter selection; Sparse FRAME (26) uses a two-stage strat-
egy, which, compared to the original FRAME, first uses matching pur-
suit to reconstruct observation; Generative Boosting (27) recruits a 
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heuristics method in that only filters with sufficiently large gradients 
will be learned; DeepFRAME (24, 25) takes it to the extreme by model-
ing a monolithic filter function using deep neural networks and does 
not explicitly involve filter selection. Unlike prior works, we take a 
global optimization perspective based on the final objective: We com-
pose our energy model with potential filters initially, dynamically 
prune and add filters, and then weigh their combination through the 
minimax entropy principle.

While such a global optimization strategy could theoretically 
find a better solution than greedy optimization, it also poses a 
unique challenge: How to handle numerous filters that in the ex-
treme case can cover continuous space? To address this problem, 
we propose to embed minimax entropy learning under the umbrel-
la of bilevel optimization (28–30): In the inner-level optimization, 
we parameterize continuous filter functions and solve for the opti-
mal parameters in each filter family to fit the observation; in the 
outer-level optimization, we perform minimax entropy learning. In 
general, the minimum entropy principle, equivalent to minimizing 
the Kullback-Leibler (KL) divergence between the modeled distri-
bution and the observed distribution, can be thought of as optimiz-
ing the best coding scheme with the shortest coding length on 
average; meanwhile, the maximum entropy principle finds the op-
timal distribution that matches the observed statistics constrained 

by the coding system while making the unconstrained dimensions 
as random as possible.

This idea fits our goal quite effectively: We are only concerned with 
the underlying “coding scheme”—that is, the hidden concepts to induce 
which most effectively produce the observation but setting no limits on 
unrelated patterns. In practice, learning proceeds in three stages in the 
minimax entropy framework. In the first stage, we solve for the optimal 
parameters in each continuous filter function and keep them fixed. In 
the second stage, we perform minimum entropy learning: Here, opti-
mizing the best coding scheme can be reduced to maximizing the log 
likelihood with respect to filter selection. In the final maximum entropy 
stage, the best distribution is analytically solved to be the Gibbs form, 
with responses from selected filters best weighed to maximize the log 
likelihood. The inner filter learning stage can be implemented indepen-
dently using any domain-specific solvers, while the outer minimax en-
tropy learning process can be implemented as maximum log likelihood 
with respect to two sets of parameters: the indicator variables for all fil-
ters and the coefficients used to weigh filters’ importance. Please refer to 
Fig. 1 for a graphical illustration of the pipeline.

In practice, we use object-centric representation when representing 
images, where we extract objects and related attributes (see Materials 
and Methods for details). For filter design, we consider different linear 
filter families for RPM and Odd-One-Out (O3) and compositional 

Fig. 1. The minimax entropy learning pipeline for few-shot concept induction. For the three tasks of interest (denoted by r, m, and o respectively), we first perform 
object extraction and classify their attributes using off-the-shelf methods. We then wire the object representation and perform the inner-level optimization to solve for 
the best filter in each filter family. Note that the wiring shown is only for illustrative purposes to avoid clutter. After learning the filters, the parameters of the filters are 
fixed. In the minimum entropy learning stage, we selectively pick filters that can increase the expected log likelihood, equivalent to minimizing the average coding length. 
Here, the filters grayed out are not chosen. In the maximum entropy stage, we find the best weights (denoted by different colors) for combining the filters. The learned 
filters and weights are summed and exponentiated to produce the optimal distribution that characterizes the observation.
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arithmetic expressions for Machine Number Sense (MNS) (see Mate-
rials and Methods for details). We design various forms of filters that 
cover joint structural inference involving grouping by symmetry, hier-
archy, etc.

Tasks
To evaluate the efficacy of the proposed minimax entropy model in 
few-shot concept induction problems, we compare our model (de-
noted as ME) with widely used computational approaches as well as 
human participants on a set of challenging abstract reasoning tasks 
used in IQ tests: RPM (14, 16, 31), MNS (15), and O3 (see Fig. 2 for 
examples of the tasks).

The RPM task is composed of both context panels and choice pan-
els. The context panels are arranged in a three-by-three matrix with the 
last cell missing; a test taker is asked to pick the best answer from the 
choice panels to complete the missing cell, such that the hidden rela-
tions are satisfied. The task is challenging in the sense that a model 
must be able to induce the governing relations by observing only two 
complete rows/columns and apply the induced rule to predict the next 
frame. While visual perception is simple here, the hidden relational 
concepts can be complex depending on how relations on different at-
tributes are composed.

The MNS questions are designed in a similar fashion, except 
that numerical relations must be inferred from a set of two ex-
amples satisfying the hidden relations, which vary in geometrical 
layout and grouping. In addition to the two tasks above, we also 
design an O3 task that is widely used in human intelligence evalu-
ation. In this task, a model is presented with four panels and must 
identify the oddity from the other three with common hidden 
relations.

All these three tasks are well suited for evaluating few-shot concept 
induction: They are all designed under the same spirit—that is, one 
needs to first induce the hidden concepts from a limited number of 
context samples, either short sequences or static images, before apply-
ing it to solve the problem.

We compare our model of ME with traditional relational learn-
ing models of WReN (13, 32), CoPINet (18), SCL (33), and the 
popular Transformer architecture (34, 35). However, we stress that 
training our model and that for deep learning models are intrinsi-
cally different: Our model is trained unsupervisedly with the con-
text in a single instance every time it is presented with a problem, 
whereas deep neural models are first trained supervisedly with a 
massive amount of paired input-output labels and held fixed during 
inference.

A B

C

Fig. 2. Examples of RPM, MNS, and O3. (A) In the RPM question, one needs to induce the hidden relations from the first two rows/columns and applies the hidden 
relations to the last row/column to complete the matrix. In this example, the objects outside in each row are always squares, pentagons, and hexagons and rotat-
ing from small to medium to large. Therefore, we expect a large pentagon in the missing panel. Objects inside are always triangles, squares, and circles and of the 
three different colors. The size of the inside objects remains the same. Besides, the number of objects inside ranges from 1 to 3. Hence, for the missing panel, we 
are looking for two white squares the same size of the previous inside objects. This stream of reasoning leads us to answer 3. (B) In the MNS task, one instead 
searches for the hidden numerical relations. In this example, we note that 93/31 × 7 + 22 = 43 and 6/3 × 7 + 29 = 43 in the first panel. The same relation holds in 
the second panel. Using this numerical expression, we can derive that the missing number should be 63. (C) In the O3 task, there is only one image that is odd 
against others. Therefore, we can safely induce that the hidden relation should govern the triangles rather than the circles. Therefore, the answer should be 3 as 
others all have three triangles.
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Minimax entropy learning
Instead of formulating concept induction as a discriminative pro-
cess, minimax entropy learning frames the problem as a descriptive 
process (22). Specifically, for each problem’s context set C = {xi}, 
consisting of object-centric representation of either two to three 
short sequences or static images, our ME model should learn a dis-
tribution p(x) on the object-centric representation space that best 
characterizes the hidden concept while making unconstrained di-
mensions as random as possible. Formally, assuming the hidden 
concept can be captured by a set of response functions {Hj(⋅)} or 
filters, the intuition aforementioned can be formulated as the fol-
lowing maximum entropy principle

where μobsj  denotes the average filter response on the context panels. 
This formulation requires the dimensions captured by the filters to 
match the observed statistics while setting others as unrestrained as 
possible. The optimization bears an analytical solution

where Z = ∫ exp[−∑j λjHj(x)]dx is the normalizer and λj are the op-
timal Lagrangian multipliers that can be learned through maximum 
likelihood learning on Eq. 2 (23). In the minimum entropy stage, we 
minimize the entropy of the model on the basis of the maximum en-
tropy results, which is equivalent to minimizing the KL divergence 
between the true distribution constrained by the hidden concepts 
p⋆(x) and our approximation p(x) (23)

Note that the formulation is also equivalent to maximum likelihood 
as shown above. This step is implemented as selecting the optimal set 
of filters {Hj(⋅)} among others to minimize the expected coding length 
under the coding scheme of the chosen filters (23). Unlike the greedy 
method of feature pursuit (23), we explicitly add a set of global indica-
tor variables {zj} to the optimization and alternatively maximize the 
log likelihood of the distribution, that is

There is still a remaining issue with the minimax entropy learning 
framework aforementioned: The traditional fixed filter design is lim-
ited in expressiveness and cannot adapt to different cases in distinc-
tive scenarios. Adding more filters can potentially mitigate this issue, 
but a large number of filters will unnecessarily complicate the mini-
max learning process. Besides, for relational concepts in continuous 
spaces, capturing a unique one with a finite number of fixed filters is 

difficult. To address this issue, we further devise to parameterize the 
filter functions and solve for the optimal one based on the context on-
the-fly. Specifically, we embed the minimax entropy learning frame-
work inside a bilevel optimization problem (28–30): The inner-level 
optimization works out the optimal parameters corresponding to the 
best filters in continuous filter families to felicitously describe the hid-
den concepts, and the outer-level optimization performs the minimax 
entropy learning steps aforementioned. Formally, during per-instance 
training, we maximize the log likelihood under the constraints

where the optimal filter parameters θ⋆
j

 best capture the hidden 
concepts modeled by the filter family of Hj(⋅; θj). Such a bilevel 
design could improve filter expressiveness by finding the best filter 
in a continuous filter family while avoiding adding unnecessarily 
more filters.

After training a descriptive model for each instance, we use the 
model to solve a problem in two ways: Given a candidate set, we 
can pick the one with the highest/lowest probability as the answer; 
without one, we can perform maximum A posteriori (MAP) sam-
pling from the distribution to render an answer with a render-
ing engine.

RESULTS
To evaluate models on induction of different forms of relational con-
cepts from a few examples, the proposed ME model, baseline models, 
and human performance were compared side by side on the three 
few-shot concept induction tasks. Apart from testing on the conven-
tional independent and identically distributed (I.I.D.) setup where the 
data distribution in training and testing are the same, we also evaluate 
model performance on the out of distribution (O.O.D.) setup for 
compositional generalization. In particular, we split the datasets into 
three compositionality regimes based on difficulty: the easy regime, 
the medium regime, and the hard regime. The easy regime has the 
least number of either distractors, composed rules, or operands, 
whereas the hard regime is the most challenging, involving an exces-
sive number of the aforementioned elements. Please refer to the Sup-
plementary Materials for details regarding the separation. For human 
evaluation, we recruited 600 human participants tested on 6 RPM 
problems, 8 MNS problems, and 10 O3 problems. Human participants 
voluntarily enlisted our tests published on the Credamo platform. We 
collected 300 valid responses for each set of problems. Please refer to 
the Supplementary Materials for details regarding human evaluation. 
All experiments were conducted under an approved Institutional Re-
view Board (IRB) from Peking University.

We present the primary results for the computational models and 
human participants in Fig.  3 and then analyze the human data in 
depth in fig. S2. Performance decomposition for all the tasks is re-
ported in the Supplementary Materials. We detail the experimental 
setup in the Supplementary Materials.

For the RPM task, we primarily use the RAVEN-FAIR dataset (31) 
for evaluation and defer results on RAVEN (14) and I-RAVEN (16) to 
the Supplementary Materials. The RPM task asks for an answer from 

max
p
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the choice set that can complete the missing panel in the three-by-
three matrix. As shown in Fig. 3, the WReN model can only correctly 
solve 29% of all the questions, while the SCL learner successfully ad-
dresses 86% of them. At first sight, both the neural baseline models 
and the proposed ME model can already work out most of the prob-
lems in RPM. The results in O.O.D. tests clearly show that neural 
models tend to overfit the dataset without mastering how to perform 
induction: In the second to the fourth columns, neural models are 
trained on one regime and tested on the other two. While an ideal hu-
man learner should be able to generalize to higher compositionality 
when learning regimes of lower compositionality (or vice versa), we 
note that neural models do not have this capability and when tested 
on other regimes, they are far worse than tested in domain. In con-
trast, our proposed ME model remains performative either I.I.D. or 
O.O.D. Note that both our ME model and human participants con-
duct per-instance learning; they are not trained with a specific train-
ing set but rather directly tested on the test set. As shown in Fig. 3, ME 
notably improves over existing baselines and outperforms a majority 
of human participants. Looking into the details of model performance 
on ME and other deep learning models in the Supplementary Materi-
als, we find that ME is much more stable across datasets. The candi-
dates in RAVEN are constructed by randomly perturbing an attribute 
in the answer panel, and therefore, a deep learning model could po-
tentially leverage the statistics in the choice set, picking the panel 

whose attributes appear the most in all panels, to game the evaluation 
procedure. I-RAVEN and RAVEN-FAIR mitigate this issue by gener-
ating the choice set from a graph-based perturbation process (16, 31). 
This minor change considerably affects the performance of CoPINet, 
whose accuracy cliffs and falls much below superhuman performance. 
The recent work of Zhang et al. (36) proposes an induction system, 
relieves the strong reliance on external knowledge from Zhang et al. 
(21), and greatly improves on the systematic generalization capability. 
However, their system is specifically designed for the RPM task and 
not adaptable for others like MNS and O3. Of note, our system is com-
parable with their ALANS-V model and slightly improves on ALANS-
V’s performance on both RAVEN (94.4%) and I-RAVEN (93.5%).

Incapability of deep learning models on MNS is evident in the 
sense that they can reach about 20% accuracy only. In the MNS task 
(15), one needs to find the characteristic numerical structure underly-
ing the context examples and apply it to fill the blank in the final panel. 
The inability of baseline models could be related to the nature of the 
task: A model needs to perform structural search to resolve a question. 
However, the potential solution space is exponentially large, especially 
when the number of elements increases. Deep learning models, no 
matter specially designed for relational learning or as efficient classifi-
ers, simply cannot learn to perform structural search but rather just 
leverage statistical correlations in this task. The observation is even no-
ticeable in the O.O.D. setup of the easy regime: Neural models can 

Fig. 3. Performance of different models compared to humans on the task of RPM, MNS, and O3. The rows denote the three tasks. The first column shows the model 
performance on the I.I.D. setup and the following three on the O.O.D. setup. In each of the O.O.D. setup, the models are trained on the regime denoted in the title and 
tested on all three regimes. Note that ME is learned per-instance, and hence, the notion of generalization does not apply. We show its performance on O.O.D. regimes for 
comparison. The right-most axis shows the Gaussian distribution modeled from the human population.
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barely solve any problems with more numbers. In general, humans 
also struggle on this task. ME model’s performance decreases with the 
exponentially increasing size of the search space. By combining bilevel 
optimization to search for the best filter in each group and weighing 
the composition to describe the hidden relations, the ME model can 
still attain reasonably high accuracy in the hardest regime of all, sur-
passing humans in this task.

The task of O3 is relatively easier compared to others. In this task, 
one is required to pick an odd image from the presented set of images. 
We note that among the deep learning models, the relational learning 
models of WReN, CoPINet, and SCL fare worse than the simple clas-
sifier of ViT in the I.I.D. setup. However, none of them becomes dom-
inant in the O.O.D. regimes. The proposed ME model performs this 
task by learning only from the four figures, optimizing the best filter 
to capture the common features that can tell apart the odd sample. 
The model achieves the best performance on both the I.I.D. setup and 
the O.O.D. setup.

ME model’s additional advantage points to the benefits of mod-
eling the problem using a descriptive form: Unlike the discrimina-
tive models, descriptive models can not only be turned into 
discriminative but also generative. Specifically, one can directly 
sample from the learned distribution in each problem and render 

an answer to the problem without being provided the choices. 
Figure 4 shows the generated samples for RPM and MNS. As for 
O3, the answer does not follow the hidden relations and cannot be 
directly generated. In general, we perform MAP sampling on the 
conditional distribution that is fixed on the context panels. Since 
the generated variables are continuous, we round them to the 
nearest integers. We then feed the variables into rendering engines 
that render the final images.

In the following, we conduct ablation study to see how much each 
stage of the learning process contributes to the final performance im-
provement. Effectively, the first stage carries out filter learning; the 
second stage performs minimum entropy learning, selecting the right 
composition of filters; the third stage weighs different filters via maxi-
mum entropy learning. As shown in Table 1, with only filter families 
learned and filter selection and weighing randomly initialized, our 
model can only achieve performance better than or comparable to 
chance selection. However, the minimum entropy learning stage for 
filter selection tremendously boosts the model accuracy, indicating 
that correctly picking the filters to constrain the concept space plays 
the most crucial role in capturing the hidden relations in the problem 
context. Compared to learning filter families and filter selection only, 
the last stage of maximum entropy learning, when incorporated, 

A

B

Fig. 4. Examples where the answers are generated by the ME model. (A) In the RPM example, we note that in the first two rows, the left part consists of triangles, 
hexagons, and circles and of the three different colors. Therefore, we know the left part of the answer should be a white triangle. Similarly, the right part should be a 
pentagon. As objects in the right part rotate from small to medium to large. The answer panel should have a medium-sized pentagon. Hence the answer. Note that the 
generated panel has random rotations and looks different from the candidate but still should be considered correct. (B) In the MNS example, the two numbers on each 
side multiply to the center number. Therefore, the missing slot (red circle) should be filled with 2. Our ME model generates the exact solution.
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squeezes out the last bit of performance by properly weighing differ-
ent components to compose the final distribution.

To evaluate our model of ME in a more traditional setup, we 
have also compared ME with other models on the task of Syn-
thetic Visual Reasoning Test (37), commonly used for few-shot 
concept learning assessment (see the Supplementary Materials). 
The experimental results show that ME remains performant and 
data-efficient compared to pure deep learning models like ResNet 
(38) and ViT (35) and that ME can be transformed for the conven-
tional supervised learning setup.

DISCUSSION
In this work, we present the ME model to solve the few-shot concept 
induction problems in RPM, MNS, and O3. The model uses the de-
scriptive minimax entropy learning principle, where the minimum 
entropy principle finds the tightest set of constraints that can repro-
duce the observed distribution and the maximum entropy principle 
sets the unconstrained dimensions as free as possible. The minimum 
entropy learning process is improved from the original greedy feature 
pursuit algorithm to the global optimization procedure. The model is 
further combined with bilevel optimization to address existing prob-
lems. By parameterizing the filter functions, we can not only expand 
the search space but also avoid the complexity introduced by an ex-
cessive number of filters. In the learning phase, we first optimize for 
the best filter in each filter family and then perform minimax entropy 
learning. During inference, the descriptive model of ME can be 
turned into both discriminative and generative. In discrimitive evalu-
ation, our ME model markedly outperforms existing deep learning–
based models and is on par with, if not better than, human participants. 
In addition, the ME model can also generate the final answers via con-
ditional MAP sampling, provided with rendering engines.

We are constantly witnessing the changing landscapes in artifi-
cial intelligence: With the scale of models and datasets exponential-
ly increasing, machines nowadays can perform some of the everyday 
tasks extremely well (38–40). However, humans are still much better 
than machines at inducing unfamiliar relational concepts: We only 
need a limited number of samples without supervision and can ex-
plain an unfamiliar phenomenon with the induced concept in dif-
ferent forms (1, 3, 41, 42). Our work provides a piece of evidence 
that by properly combining bilevel optimization and minimax en-
tropy learning, the gap between humans and machines in elemen-
tary concept induction can be well reduced. Machine learning and 
cognitive reasoning research have only begun to investigate the few-
shot concept induction task under a big-data-small-task paradigm 

(16, 18–20, 33), whereas our model has already managed to perform 
at human level.

Although successful on these tasks, the ME model relies on accu-
rate perception on visual objects. The object-centric representation is 
simple in these tasks as well. Nevertheless, in real-world scenarios, 
people can see far richer components in pictures, like changing part-
whole hierarchies, symmetry, stability, aesthetics, and even motion 
(4). Such structures are common in everyday life but out of the scope 
in this study. Besides, our filters are mostly linear and therefore cannot 
well capture complex physical concepts or social dynamics.

Capturing the fascinating ability of humans should be of para-
mount importance to building artificial general intelligence. And we 
argue that understanding few-shot concept induction in humans re-
quires us to answer developmental questions. What kinds of inductive 
bias do children acquire to solve similar tasks so effectively? As such 
tests are usually recruited to measure human intelligence, what is the 
factor in telling smarter people from average population? How do 
people quickly identify the hidden relations in a large but loosely con-
strained space? Is a mechanism similar to minimax entropy learning 
applied?

With many questions remaining to be answered, we hope this 
work may shed light on the small-data-big-task paradigm: Ultimately, 
we are striving for a learning machine that can efficiently use a gen-
eral mechanism to induce the hidden concepts in various reasoning 
scenarios.

MATERIALS AND METHODS
Datasets
The RAVEN series of datasets (14, 16) are commonly used for evalu-
ating model performance on the RPM task. Each RAVEN instance 
consists of a context set and a choice set. The context set is composed 
of eight panels, arranged in a 3 × 3 matrix with the last one missing. 
To finish the task, a model needs to pick one from the eight choices 
to complete the missing panel. The RAVEN series of datasets are di-
vided into seven configurations: center, 2 × 2 grid, 3 × 3 grid, left-
right, up-down, in-center-out-center, and in-grid-out-center [see 
(14) for details]. For each configuration, the dataset has 10,000 data 
points, which are further organized into sixfold for training, twofold 
for validation, and twofold for testing. Each panel includes several 
objects with attributes of type, size, and color. On the panel-level, one 
can also summarize the attributes of number and object position. A 
predefined set of relations can govern each of the object-level attri-
butes and the panel-level attributes: constant, progression, arithme-
tic, and distribute of three. Please refer to (14) for detailed descriptions 

Table 1. Ablation study for the proposed ME model on RPM, MNS, and O3. The performance is measured by accuracy on the test sets. ME FL only denotes 
the performance of our ME model with only the first stage of filter learning, whereas ME FL + z with both the first stage of filter learning and the second stage of 
filter selection via minimum entropy learning. The full model with the first stage of filter learning, the second stage of filter selection, and the third stage of 
maximum entropy learning is our final ME model. Since on O3, we only use one filter family, and the second stage and the third stage can be combined into one. 
Please refer to the Supplementary Materials for detailed model performance.

Method RPM MNS O3

ME FL only 24.2% 30.2% 24.8%

ME FL + z 89.3% 76.3% –

ME 97.6% 81.9% 98.2%

D
ow

nloaded from
 https://w

w
w

.science.org on A
pril 23, 2024



Zhang et al., Sci. Adv. 10, eadg2488 (2024)     19 April 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

8 of 10

of the relations. The original RAVEN dataset generates the choices 
by perturbing only one attribute of the ground-truth answer and 
can cause models to learn to leverage statistical shortcuts hidden in 
the choice set. I-RAVEN (16) mitigates this issue by modeling the 
perturbation using a tree structure, such that models cannot use 
context-blind information to solve a problem. RAVEN-FAIR (31) 
further adds to the challenge by using a graph structure for answer 
generation.

The MNS dataset (15) was developed to evaluate MNS by testing 
how accurately models could infer the hidden numerical relations ex-
emplified in two panels and use the relations to work out the missing 
number in the last one. The problems differ in problem types, con-
figurations, layouts, and interpretation methods, totaling in 28 dis-
tinctive styles. Each style has also 10,000 data points, adding up to 
280,000 samples. Train-val-test split is done as in RAVEN, with six-
fold for training, twofold for validation, and twofold for testing.

The O3 dataset introduced is created under the same framework of 
the RAVEN series datasets. In each instance, four panels are generated 
where only one is odd from others. Each panel comprises of distinc-
tive objects, and the attributes are defined the same as in RAVEN. To 
characterize oddity, we use the number of a specific object: The com-
mon set of panels all have the same number of a specific object while 
the odd one does not. We also make sure that there is not a second 
interpretation to tell the difference by performing a check on every 
three compositions based on the criterion. We devise three different 
configurations and generate 10,000 data points for each one. Train-
val-test split is done the same as mentioned above.

Problem representation
For representing each problem instance in RPM, MNS, and O3, we 
adopt an object-centric scheme (43). Specifically, we detect objects 
and extract object attributes: For RPM and O3, we obtain object 
position, type, size, and color and encode them in one-hot repre-
sentation, whereas for MNS, we directly use the corresponding 
integer numbers.

As RPM involves spatial-temporal information, we perform 
minimax entropy learning on each row: Each xi in the context 
panel set C is composed of three panels in a row. Using the one-hot 
encoding scheme for RPM, the input to our minimax entropy 
learning framework is a tensor of 3 × n × m, where n represents 
the maximum number of objects among the three panels and m is 
the concatenated attribute space. For MNS and O3 that only in-
volve temporally independent frames, we directly learn from the 
two-dimensional object-centric representation: integer matrix for 
MNS and one-hot matrix for O3.

Computing �obs

j

For RPM and MNS, the design principle is the same: We are looking 
for the shared relations in all given context panels. Therefore, we can 
directly use the mean filter response on the context panels. Formally

where C is the context panel set.
O3 is slightly different, as the odd one is among the given con-

text panels but does not follow the relations hidden among others. 
Therefore, we propose the following way to estimate the mean filter 
response

where C−k denotes the set without xk. For the selection of k, we use the 
Fisher’s criterion to measure the distance between two distributions 
(44, 45). Specifically, we set the subset without xk and the singleton set 
of {xk} as two classes and compute the ratio of between-class variance 
and within-class variance. The k with maximum ratio is selected. This 
formulation identifies the panel that produces the largest gap in the 
filter response and only uses the mean filter response of the common 
set as the statistics to match.

Filter and loss design
For RPM problems, we consider three continuous filter families cor-
responding to unary relations, binary relations, and ternary relations. 
We use linear families and minimize ℓ2 loss to solve for the best one in 
each family. Specifically, for unary relations, we use

for binary relations, we use

for ternary relations, we use

Here, A and b are the parameters we need to solve in the filter func-
tions. Note that here we only use linear functions and ℓ2 loss because 
linear regressions admit closed form solutions and do not require an 
extensive amount of data points to be learned, satisfying our need of 
few-shot concept induction.

For MNS problems, we use a combinatorial space of basic arith-
metic expressions. Specifically, we consider filter families of arithme-
tic expressions of length from two to six and use the ℓ1 loss to search 
the best arithmetic expression in each filter family.

For O3 problems, we also use a linear form of filter response

where A and b are the parameters. Combining the filter family and the 
statistics computation criterion, we can directly turn it into Fisher’s 
discriminant analysis and use it for our inner-level optimization. In 
practice, we note that this formulation does not yield the best results 
due to the lack of sparsity constraints. Therefore, we reformulate Fish-
er’s discriminant analysis as linear regression based on their equiva-
lence (45), add Lasso sparsity constraints, and solve using a decent 
method. We then solve for the best model in all four possibilities of k, 
find the one with the largest gap, and pick it as our final filter.

Optimization
Optimizing Eq. 5 is challenging because gradients with respect to λ 
are stochastic and z are discrete variables. Specifically, for λ, determin-
istic gradients are hard to obtain: Gradients with respect to λ are de-
rived as (23–25)

μ
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where x follows the distribution of the learned p(⋅). To compute the 
second term, we perform Markov Chain Monte Carlo sampling to 
sample x and use the samples to approximate the mean. For optimiz-
ing z, we could use anther stochastic optimization trick: We instanti-
ate each zj as a random variable following a Bernoulli distribution 
parameterized by ϕj and add another layer of averaging over the max-
imum likelihood objective, that is

In this way, optimizing z could be understood as reinforcement learn-
ing (46), where the parameterized policy outputs an action distribu-
tion and can be jointly optimized by REINFORCE (47). In practice, 
this optimization is extremely unstable as the combinatorial action 
space is large and computing the “reward,” or the exact log likelihood, 
involves estimating the normalizer Z. Therefore, we use a simplified 
heuristics: We only select zj that has a sufficiently small loss value. This 
simple strategy globally improves on the trivial zero initialization and 
can be understood as pruning early filters that do not look promising 
to increase likelihood.

Generating answers
We perform MAP sampling on the conditional distribution given the 
context for generation. Take the RPM problem in Fig. 4 as an example. 
Formally, the conditional distribution can be represented as

where x3,k denotes the kth image in the last row. Remember that for 
RPM, the distribution is learned for each row. Then, to perform 
MAP sampling, one can directly optimize the energy term, that is

In practice, we use simple gradient descent to optimize the energy 
term. After getting x3,3, we round the variables to the nearest inte-
gers, as it is one-hot object-centric representation. We then feed 
the object-centric representation into a dedicated rendering en-
gine to generate the final image. The process for MNS is similar, 
except that the distribution is modeled for each panel and that we 
only need existing numbers in the last panel to solve for the 
missing one.
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