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Figure 1. Illustration of the PHYSCENE, physically interactable scene synthesis method to generate interactive 3D scenes characterized
by realistic layouts, articulated objects, and rich physical interactivity tailored for embodied agents.

Abstract

With recent developments in Embodied Artificial Intel-
ligence (EAI) research, there has been a growing demand
for high-quality, large-scale interactive scene generation.
While prior methods in scene synthesis have prioritized
the naturalness and realism of the generated scenes, the
physical plausibility and interactivity of scenes have been
largely left unexplored. To address this disparity, we in-
troduce PHYSCENE, a novel method dedicated to gener-
ating interactive 3D scenes characterized by realistic lay-
outs, articulated objects, and rich physical interactivity tai-
lored for embodied agents. Based on a conditional diffusion
model for capturing scene layouts, we devise novel physics-
and interactivity-based guidance mechanisms that integrate
constraints from object collision, room layout, and object
reachability. Through extensive experiments, we demon-
strate that PHYSCENE effectively leverages these guidance
functions for physically interactable scene synthesis, out-

∗indicates equal contribution.

performing existing state-of-the-art scene synthesis meth-
ods by a large margin. Our findings suggest that the scenes
generated by PHYSCENE hold considerable potential for
facilitating diverse skill acquisition among agents within in-
teractive environments, thereby catalyzing further advance-
ments in embodied AI research.

1. Introduction
The exploration of scene synthesis [7, 11, 14, 16, 30, 45,
54, 58, 62, 67] has constituted a persistent focus within the
field of computer vision. Initially conceived to facilitate in-
door design applications, scene synthesis aimed to create
diverse 3D environments characterized by both realism and
naturalness. However, with the advent of embodied arti-
ficial intelligence (EAI) [1, 12, 25, 27], the objectives of
this task have taken on new dimensions. Simulated envi-
ronments [9, 10, 33, 35, 50, 57], now supporting a plethora
of intricate embodied tasks, have propelled the task of scene
synthesis into an important data source that provides unlim-
ited scenarios for agents to robustly learn skills like naviga-
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tion [2, 34] and manipulation [18, 31, 48]. This trend un-
derscores the growing importance of scene synthesis within
the context of EAI research.

Nevertheless, achieving a seamless transition from con-
ventional scene synthesis algorithms to those tailored for
EAI presents significant challenges in scene generation. As
many EAI tasks involve physics simulation [19, 36, 37, 39,
40, 65], the synthesized scenes must adhere to physical con-
straints while enabling a high degree of interactivity among
objects (e.g., articulated objects or fluids) and scene layout
(e.g., reachability of objects) to facilitate agent skill acqui-
sition. These stringent interactivity requirements introduce
several obstacles for scene synthesis algorithms. Limited
by the quality of real-world scanned scenes [4, 8, 29], pre-
vious methods have primarily relied on manually created
scenes [14, 15]. However, these datasets are designed with
non-interactable objects, overlooking physical constraints,
and are prone to violations of such constraints. Conse-
quently, this poses a significant challenge for algorithms
aiming to learn physically plausible arrangements of inter-
actable objects. Beyond data-level hurdles, incorporating
scene interactivity (e.g., maintaining sufficient workspace,
ensuring object reachability and interactivity) introduces
non-trivial challenges in designing optimizable objectives
that reflect such abstract concepts. These challenges em-
phasize the need for an effective scene synthesis algorithm
that integrates the naturalness and realism of conventional
synthesis algorithms while ensuring the physical plausibil-
ity and interactivity of scenes.

To address these challenges, we propose PHYSCENE, a
diffusion-based method embedded with physical common-
sense for interactable scene synthesis. Specifically, our
approach builds on the efficacy of guided diffusion mod-
els [3, 23, 38, 51] to effectively learn scene distribution and
guide the model in generating scenes that are both func-
tionally interactive and physically plausible. To incorpo-
rate articulated objects into generated scenes, we utilize
the shape and geometry features, bridging rigid-body ob-
jects from training scenes with existing articulated object
datasets. To model physical plausibility and interactivity ac-
curately, we impose three key constraints on the generated
scenes: (1) physical collision avoidance between objects
to enable simulation, (2) object layouts constrained on the
floor plan to avoid inter-room conflicts, and (3) the inter-
activeness and reachability of each object when assuming
an embodied agent of proper size need to navigate. We con-
vert these constraints into guidance functions that can be
easily integrated into the guided diffusion model. We fur-
ther propose metrics considering the aforementioned con-
straints in our evaluation process for assessing all existing
models. Through meticulously designed experiments, we
demonstrate that PHYSCENE not only achieves state-of-the-
art results on traditional scene synthesis metrics but also sig-
nificantly enhances the physical plausibility and interactiv-
ity of generated scenes compared to existing methods. We
hope this work can make a step forward in scalable indoor

scene synthesis for EAI tasks, contributing to the broader
landscape of EAI research.

In summary, our main contributions are:
• We propose PHYSCENE, a guided diffusion model, for

physically interactable scene synthesis with realistic lay-
outs and interactable objects.

• Through well-crafted designs of guidance functions, we
convert constraints encompassing collision avoidance,
room layout, and reachability into PHYSCENE in a simple
and effective way to ensure the physical plausibility and
interactivity of the generated scenes.

• By comparing with competitive baseline models, we
show that PHYSCENE can not only achieve state-of-
the-art results on traditional scene-synthesis metrics but
also significantly outperforms existing methods for inter-
actable scene synthesis on our delicately designed physi-
cal metrics, paving the way for new research topics bridg-
ing scene synthesis and EAI.

2. Related Work

Indoor Scene Synthesis Indoor scene synthesis is for-
mulated as a layout prediction problem, where each object
is often represented by its 3D bounding box, semantic la-
bels [14, 54], or shape features [51] for retrieving corre-
sponding meshes from 3D asset libraries to the specific lo-
cations. To properly model the layout of objects in training
datasets, current methods usually represent the arrangement
of objects as a scene graph [7, 11, 62, 67] and utilize scene
priors such as the spatial relationship between objects [45]
and object category (co-)occurrence frequency [16, 58] for
approximating the scene layout distribution. While gener-
ating new scenes, these works leverage iterative sampling
or optimization methods to reject scenes that violate the
designed scene priors for synthesizing scenes with desired
properties [7, 13, 16, 45]. However, such methods are of-
ten limited by the efficacy of sampling or optimization algo-
rithms. More recent works try to learn scene layout distribu-
tions with deep neural networks [26, 41, 42, 44, 54, 59, 64]
to improve the generation efficiency.

For the quality evaluation of generated scenes, com-
mon metrics test model performance with perceptual qual-
ity scores (e.g., FID [22], KID [5],etc.). However, these re-
alism metrics do not address the physical plausibility and in-
teractivity of generated scenes, which is crucial for adapting
scenes into simulated environments. In fact, a commonly
used scene synthesis dataset, 3D-FRONT dataset [14], ex-
hibits frequent occurrence of these physically implausible
layouts (as shown in Tab. 1). In addition, the interactivity of
scenes for object manipulation and reachability is also un-
derstudied in prior works. ProcTHOR [10] has proposed a
procedural generation pipeline for interactable scenes with
rule-based constraints and statistical scene priors. Nonethe-
less, as pointed out by [32], these generated scenes suf-
fer from the pre-defined priors, thus generating unrealis-
tic scenes that are harmful to agent learning. To this end,



we aim to bridge this gap in PHYSCENE, uniting efforts in
scene synthesis and EAI to provide a pipeline that could suf-
fice for large-scale interactable scene synthesis while main-
taining visual realism and naturalness.

Physical Plausibility and Interactivity in 3D Scenes
Producing physically plausible generations in 3D scenes has
been a long-standing problem for computer vision, given
its subtleness in properly converting physical constraints
into optimizable objectives. To tackle this challenge, vari-
ous optimization-based approaches have been proposed for
tasks such as scene-conditioned pose [21] and motion gen-
eration [52]. However, the study of physical plausibility for
scene generation has been largely left untouched. Mean-
while, the modeling of interactivity of 3D scenes has been
largely left untouched in existing works without proper def-
inition. Some works [53] aim to define the level of scene in-
teractivity via human and robot preferences in a scene rear-
rangement setting. Nonetheless, with their task-specific de-
sign, the optimization objectives are hard to be generalized
to other settings. Therefore, PHYSCENE aims at address-
ing these obstacles and makes the first attempts to provide
reasonable definitions of physical plausibility and scene in-
teractivity in the context of scene synthesis.

Guided Diffusion Models Diffusion models [24, 38, 49]
have shown promising results for generative AI [26, 28, 47]
across various domains [43, 55, 56, 60, 63]. Through an
iterative denoising process, diffusion models excel at han-
dling high dimensional distributions without mode collapse.
Such an iterative process also offers flexible ways to provide
conditions [6, 46] and guidance [3, 23] that could effec-
tively affect the inference of models. For example, SceneD-
iffuser [26] integrates a physics-based objective as condi-
tional guidance for physically plausible planning and mo-
tion generation. PhysDiff [61] proposes a physics-based
motion projection module to instill the laws of physics
into the denoising diffusion process for motion generation.
PHYSCENE takes insight from these powerful techniques
and integrates physical and interactivity guidance as con-
ditional guidance for scene synthesis. Compared to con-
strained sampling methods such as Markov Chain Monte
Carlo (MCMC) [45, 53], diffusion guidance runs more effi-
ciently during the inference stage. Meanwhile, in contrast to
models that take in constraints as a learnable objective [51],
our guidance functions can more effectively ensure the sat-
isfaction of constraints during inference. To the best of our
knowledge, PHYSCENE makes the first attempt to integrate
a conditional diffusion model with physical plausibility and
interactivity guidances to effectively generate physically in-
teractable 3D scenes.

3. PHYSCENE

Physically interactable scene synthesis requires realis-
tic layouts, articulated objects, and physical interactivity.

Table 1. Interactivity evaluation of scenes in the 3D-FRONT
dataset. These scenes exhibit a high rate of physical constraint vi-
olations including collision, layout, and interactivity. We provide
detailed definitions of the metrics as explained in Sec. 4.

Data Bedroom Livingroom Diningroom

Colobj ↓ 0.214 0.206 0.209
Colscene ↓ 0.42 0.625 0.57

Rout ↓ 0.201 0.0584 0.159
Rreach ↑ 0.850 0.841 0.876

Rwalkable ↑ 0.749 0.828 0.807

However, integrating articulated objects into scenes trained
solely with static objects presents data-level challenges.
We outline our method for incorporating articulated ob-
jects into generated scenes in Sec. 3.1. We then detail
the model structure and training process of PHYSCENE,
where it learns prior layout knowledge from the dataset
in Sec. 3.2. To ensure physical interactivity, we consider
collision avoidance, room layout constraint, and agent in-
teractiveness as three key constraints, and provide details
in Sec. 3.3 on transforming them into guidance functions
for posterior optimization during the inference process.

3.1. Object representation
The scene x is composed of N objects, noted as
x = {o1, ...,oN}. Each object representation oi =
[ci, si, ri, ti, fi] is composed of a semantic label ci ∈ RC

out of C categories, size si ∈ R3, orientation ri =
(cosθi, sinθi) ∈ R2, location ti ∈ R3 and 3D feature
fi ∈ R32 encoded from the shape of the object. Notably,
common approaches for scene synthesis retrieve objects us-
ing the predicted size si and label ci. However, such meth-
ods could not be applied across asset libraries. We therefore
leverage the shape feature fi as a critical indicator for object
retrieval, especially considering the objects in available ar-
ticulated object datasets are largely different from those in
scene synthesis datasets. Specifically, we follow [51] and
utilize a variational auto-encoder to embed object geometric
features, transforming each 3D furniture model into a latent
shape feature. For generating scenes with interactable ob-
jects, we consider object assets from: 1) 3D-FUTURE [15]
which contains CAD models used in 3D-FRONT [14], and
2) GAPartNet [17] that includes various articulated objects.
During inference, we use the latent encoded feature to find
the best match of articulated objects in GAPartNet given the
static objects in 3D-Front, thereby enabling the generation
of scenes containing interactable objects.

3.2. Conditional Diffusion for Layout Modeling
With a data sample x0 representing the scene layout in the
dataset, we gradually add Gaussian noise to x0 with a for-
ward process q(xt+1|xt) converting it into a Gaussian noise
xT . Then a reverse denoising process pθ(xt|xt+1) is ap-
plied to recover the data from noise with learnable parame-
ters θ. Additionally, we consider using the floor plan F as a
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Figure 2. Overview of PHYSCENE. We leverage diffusion models for capturing scene layout distributions and apply three distinct
guidance functions for improving the physical plausibility and interactivity of generated scenes.

condition for incorporating the workspace and room layout
constraints. In this case, we reconstruct x0 via:

pθ(x0|F) = p(xT )

T∏
t=1

pθ(xt−1|xt,F),

pθ(xt−1|xt,F) = N (xt−1;µθ(xt, t,F),Σθ(xt, t,F)),

where pθ(x0|F) denotes the probability of scene layout x0

given the conditional floor plan F . As pointed out by previ-
ous works [24], this maximization of conditional probabil-
ity pθ(x0|F) could be equivalently formulated as a simpli-
fied objective of estimating the noise ϵ through:

Lθ(x0|F) = Et,ϵ,x0

[
∥ϵ− ϵθ(

√
α̂tx0 +

√
1− α̂tϵ, t,F)∥22

]
= Et,ϵ,x0

[
∥ϵ− ϵθ(xt, t,F)∥22

]
,

(1)
where α̂t is a pre-defined function of t in the forward pro-
cess according to a noise schedule (see details in the sup-
plementary). To learn this conditional model, we utilize a
U-Net with attention blocks to model ϵθ(xt, t,F) with time
embedding t and floor plan embedding F added as condi-
tions within every U-Net layer.

3.3. Guidance for Physical Interactivity
Considering the physical constraints violations in scenes
from existing training data (as shown in Tab. 1), we en-
sure the physical plausibility and interactivity of generated
scenes by guiding the conditional scene diffusion process
with physic-based guidance functions. We start by first
introducing guided sampling for diffusion models. Given
constraint function φ(x,F), we formulate the guided in-
ference problem as optimizing the probability of constraint
satisfaction:

p(x0|F , O = 1) ∝ pθ(x0|F)p(O = 1|x0,F)

∝ pθ(x0|F) · exp (φ(x0,F)) ,
(2)

where O is an optimality indicator checking if the condi-
tional generated output xt at denoising step t satisfies the
constraints in φ(x,F). Similar to [26], we use the first or-
der Taylor expansion around xt = µ at timestep t to esti-
mate the optimal condition in Eq. (2) with:

log p(O = 1|xt,F) ≈ (xt − µ)g + C

g = ∇xt
log p(O = 1|xt,F)|xt=µ

= ∇xt
φ(xt,F)|xt=µ,

(3)

where µ = µθ(xt, t,F), g is the first order gradient esti-
mate at xt = µ of log p(O = 1|xt,F), and C is a constant.
Therefore to generate a scene with constraints considered,
we can modify the denoising process with a constraint per-
turbed Gaussian transition:

pθ(xt−1|xt,F , O = 1) = N (xt−1;µ+ λΣg,Σ), (4)

where Σ = Σθ(xt, t,F) and λ is a scaling factor. Notably,
the formulations in Eq. (2) and Eq. (4) leverage the prede-
fined constraint functions φ(x,F) as a tilting function on
the original scene layout distribution to handle constraints.

Under this formulation, we can easily combine the con-
straint functions into both learning and inference. Follow-
ing Eq. (1), we can reformulate the optimization of objec-
tive with φ(x,F) through:

Lθ(x0|F , O = 1) = Et,ϵ,x0

[
∥ϵ− ϵθ(xt, t,F)− λΣg∥22

]
(5)

In scene synthesis, the guidance functions φ(xt,F) usu-
ally require real scene layouts for computing the violation
constraints. Therefore, instead of optimizing for xt which
might not be meaningful for real scenes, we convert the
guidance functions into φ(x̃t

0,F) where x̃t
0 is the predicted

scene layout given initialization xt. We summarize the
guided learning and inference process of PHYSCENE in Al-
gorithm 1.



Algorithm 1: Learnning and inference in PHYSCENE

Modules: Model pθ(·|F), guidance functions
φ(·,F) = {φcoll(·), φlayout(·,F), φreach(·,F)}.

// constraint-guided learning
Input: 3D scene layout x = {o1, ...,oN} with floor plan

F , where N is a fixed number of objects.
repeat

x0 ∼ p(x0|F)
ϵ ∼ N (0, I), t ∼ U({1, · · · , T})
xt =

√
α̂tx0 +

√
1− α̂tϵ, x̃t

0 ∼ pθ(·|F)
θ = θ − η∇θ∥ϵ− ϵθ(xt, t,F)− λΣg∥22

until converged;
// one-step guided sampling
function sample (τ t, φ):

µ = µθ(xt, t,F), Σ = Σθ(xt, t,F)
φ(xt,F) =
γ1φcoll(xt) + γ2φlayout(xt,F) + γ3φreach(xt,F)
xt−1 = N (xt−1;µ+ λΣ∇xtφ(xt,F)|xt=µ,Σ)

return xt−1

// constraint-guided generation
Input: initial scene layout xT ∼ N (0, I)
for t = T, · · · , 1 do

// sampling with optimization
xt−1 = sample(xt, φ)

end
return x0

Based on this formulation, we further propose three
physic-based guidances φcoll(x), φlayout(x,F), and
φreach(x,F) and integrate them into the inference process
as illustrated in Algorithm 1. We detail the design of each
guidance function as follows:

Collision Avoidance. We design a collision avoidance
function to reduce object mesh collisions in the generated
scene. Instead of calculating the collision mesh between
objects, we use the predicted bounding boxes and object
centers as effective approximates for estimating the colli-
sion score of objects. Specifically, we use bi = [ti, ri, si]
to denote the 3D bounding box of object oi including its lo-
cation ti, orientation ri and size si. We use 3D IoU [66] to
calculate the collision guidance objective via:

φcoll(x) = −
∑

i,j,i ̸=j

IoU3D(bi, bj), (6)

where IoU3D represents the 3D bounding box IoU between
object bounding boxes. We sum the collisions of each pair
of objects in scene x and take the negative value of the sum-
mation to penalize object collision.

Room-layout guidance An important goal of scal-
able scene synthesis is to generate interactable house-level
scenes in which embodied agents can navigate and interact.
To achieve this goal, we consider adding the room-layout
guidance that penalizes the existence of objects which are
outside of a pre-given floor plan. To consolidate this guid-
ance function, we first extract a polygon of the room bound-

ary given the floor plan F . We then derive a set of W
outside barriers for identifying the boundary, represented as
bounding boxes of walls {bwall

w }Ww=1 with infinite thickness.
We use a similar IoU score between objects and walls for
room-layout guidance following:

φlayout(x|F) = −
N∑
i=1

W∑
j=1

IoU3D(bi, b
wall
j ). (7)

Reachability guidance For an embodied agent, the syn-
thesized scene should allow it to traverse the entire room
and interact with all objects successfully. Notably, the syn-
thesized room is often separated into several disjoint con-
nected regions in scenes with improper layouts. Based on
this key observation, we aim to adjust the object locations
that most significantly affect this connectivity between re-
gions. More specifically, considering an embodied agent
represented by its bounding box bagent, we first map the gen-
erated scenes to a 2D room mask and calculate the walka-
ble area in this scene considering the agent’s size. Next,
we employ Gaussian distributions on each positioned ob-
ject in the scene to form a cost map for traversing the scene.
Intuitively, points closer to objects will have higher costs.
With the cost map, we plan the shortest path between the
center of the two largest connection regions using the A*
algorithm [20]. The resulting path indicates the least effort
path to traverse between these two regions. We then select
L agent positions on this shortest path with bounding boxes
{bagent

1 , ..., bagent
L } for applying the guidance function. The

reachability guidance can therefore be calculated via:

φreach(x|F) = −
N∑
i=1

L∑
j=1

IoU3D(bi, b
agent
j ). (8)

Notably, we can extend the current method to incorpo-
rate interaction constraints to ensure the articulated object
interaction (e.g., grasping, opening) as well as complex
rigid object interaction (e.g., sit) with some simple modi-
fications. More details are provided in the supplementary.

4. Experiment
Dataset For experimental comparisons, we train our dif-
fusion model on the 3D-FRONT dataset [14] which con-
tains 6813 houses with 14629 rooms. Each room is manu-
ally decorated with high-quality furniture objects from the
3D-FUTURE dataset [15]. Following the setting of Dif-
fuScene [51] and ATISS [42], we use 4041 bedrooms, 900
dining rooms, and 813 living rooms for training and testing.
In addition, we use both the 3D-FUTURE dataset [15] and
GAPartNet [17] for object retrieval. Among them, GAPart-
Net [17] has abundant interactive assets, containing 1166
articulated objects from 27 object categories. We utilize ar-
ticulated objects in the table and storage furniture category,
such as wardrobe and table, to retrieve related objects in



Table 2. Quantitative comparison on unconditional scene synthesis trained on 3D-Front. We compare PHYSCENE with ATISS and
Diffuscene on common perceptual quality scores FID, SCA, CKL, as well as physical plausibility measured in collision rate Col.

Method Bedroom Living Room Dining Room

FID ↓ SCA ↓ CKL ↓ Colobj ↓ Colscene ↓ FID ↓ SCA ↓ CKL ↓ Colobj ↓ Colscene ↓ FID ↓ SCA ↓ CKL ↓ Colobj ↓ Colscene ↓
ATISS [42] 36.92 49.24 0.0036 0.255 0.50 55.76 53.33 0.0016 0.372 0.870 41.89 58.20 0.0028 0.483 0.91

DiffuScene [51] 28.63 51.33 0.0031 0.238 0.42 54.36 50.24 0.0010 0.183 0.570 37.68 57.60 0.0031 0.253 0.63

PhyScene (Ours) 28.56 55.71 0.0030 0.187 0.35 40.67 56.20 0.0015 0.130 0.477 37.88 58.74 0.0022 0.134 0.40

ATISS DiffuScene PhyScene(Ours)

Figure 3. Visualization of floor-plan conditioned scene synthesis between PhyScene, ATISS, and DiffuScene. The red, purple, and
blue boxes highlight collisions between objects, objects outside the floor plan, and unreachable areas to the embodied agent, respectively.

generated scenes, and provide the full object category map-
ping between datasets in the supplementary.

Baseline We mainly consider two state-of-the-art scene
synthesis methods as baselines: 1) ATISS [42], a
transformer-based model that predicts the 3D object bound-
ing box in an autoregressive manner, and 2) DiffuScene
[51], a diffusion-based model that learns 3D objects layout
without floor plan constraint. We test these baselines in both
unconditional synthesis and floor-plan-conditioned synthe-
sis settings to compare our proposed PHYSCENE model.

Metric To evaluate the realism and diversity of the syn-
thesized scenes, we follow the previous works and calcu-
late Fréchet Inception Distance [22] (FID), Kernel Incep-
tion Distance [5] (KID ×0.001), Scene Classification Ac-
curacy (SCA), and Category KL divergence (CKL ×0.01)
on 1000 synthesized scenes. In addition, we check the colli-
sion rate between each pair of objects in the generated scene
using their CAD models. We use Colobj to denote the per-
centage of objects that collide with other objects in the gen-
erated scene, Colscene to denote the ratio of scenes that pos-
sess object collisions over all generated scenes. Since the
CAD models in the 3D-FUTURE dataset are usually not
watertight, we apply re-meshing for each object mesh be-
fore evaluation. To evaluate the violation of the floor plan

layout, we mark the rate of objects outside the floor plan
as Rout. Finally, we calculate the average reachable rate of
objects in the scene Rreach starting from a random starting
point on the floor plan. We calculate the average ratio of the
largest connected walkable area over all walkable areas in
the room, denoted as Rwalkable, to evaluate the reachability
and interactivity of the generated scenes.

4.1. Unconditioned Scene Synthesis
We provide quantitative evaluation results in Tab. 2. As
shown in Tab. 2, PHYSCENE achieves state-of-the-art re-
sults on almost all metrics, especially with a signifi-
cant improvement on physical plausibility metrics such as
Colobj and Colscene. This result quantitatively proves that
PHYSCENE effectively produces improved scene layouts
with reduced collision rates while achieving better visual
plausibility. Notably, diffusion-based scene-synthesis mod-
els (i.e., DiffuScene and PHYSCENE) exhibit superior per-
formance in collision avoidance compared to ATISS. This
affirms the advantage of employing diffusion models as the
primary generative model for scene synthesis, given their
robust performance and adaptability in integrating guidance
functions. We provide qualitative results in Fig. 3, demon-
strating that our model successfully generates scenes with
significantly fewer instances of physical constraint viola-
tions due to object collisions while maintaining high levels
of naturalness and diversity.



Table 3. Floor-conditioned Scene Synthesis. We compare PHYSCENE with ATISS and DiffuScene on common perceptual quality scores
FID, KID, SCA, CKL, as well as physical plausibility metrics Colobj,Colscene,Rout,Rreach,Rwalkable.

Room Type Method FID ↓ KID ↓ SCA ↓ CKL ↓ Colobj ↓ Colscene ↓ Rout ↓ Rwalkable ↑ Rreach ↑

Bedroom
ATISS 30.19 0.0010 49.14 0.0028 0.248 0.46 0.286 0.839 0.736

DiffuScene 25.00 0.0004 51.78 0.0031 0.228 0.43 0.272 0.827 0.755

PhyScene (Ours) 25.52 0.0006 50.10 0.0025 0.187 0.36 0.245 0.865 0.762

Living Room
ATISS 45.66 0.0035 51.64 0.0016 0.316 0.85 0.136 0.814 0.791

DiffuScene 38.69 0.0012 54.06 0.0017 0.198 0.69 0.238 0.790 0.756

PhyScene (Ours) 43.33 0.0031 53.50 0.0015 0.191 0.63 0.219 0.815 0.771

Dining Room
ATISS 41.66 0.0039 64.57 0.0040 0.591 0.96 0.132 0.874 0.848

DiffuScene 38.31 0.0020 60.19 0.0013 0.160 0.55 0.244 0.787 0.847

PhyScene (Ours) 39.90 0.0026 60.00 0.0013 0.151 0.53 0.217 0.852 0.789

Figure 4. Generated scenes with articulated objects. We vi-
sualize the opening sequence of articulated objects (left) and the
generated scenes with texture (right).

4.2. Floor-conditioned Scene Synthesis

We provide comparisons between PHYSCENE and base-
line models in terms of both visual and physical metrics in
Tab. 3. PHYSCENE surpasses baselines in collision metrics
and the CKL score. Additionally, compared to DiffuScene,
our model consistently exhibits performance improvements
across all physical interactability metrics, highlighting the
effectiveness of our physical guidance functions in enhanc-
ing the generation process of diffusion-based models with
physical constraints. It is noteworthy that, except for the
Bedroom setting, ATISS achieves favorable results on floor
plan violation (Rout) and reachability metric (Rreach). We
attribute this to its prioritization of floor plan constraints
over collision avoidance within the scene. We provide qual-
itative visualization of all models’ generations in Fig. 3.

4.3. Scene Synthesis with Articulated Objects

To generate scenes with articulated objects, we utilize the
predicted scene layout along with object features to retrieve
articulate objects. Recognizing the spatial requirements for
interacting with articulated objects, we compute 3D bound-

Table 4. Articulated Object Embedding. We compare
PHYSCENE with ATISS and DiffuScene on physical plausibility.

Method Colobj ↓ Colscene ↓ Rout ↓ Rreach ↑
ATISS 0.360 0.86 0.154 0.758

DiffuScene 0.262 0.78 0.237 0.702
PhyScene (Ours) 0.251 0.76 0.229 0.755

Table 5. Ablation study on the use of guidance functions. Our
final result balances the effectiveness of three guidances.

Collision Layout Interact Colobj ↓ Rout ↓ Rwalkable ↑ Rreach ↑
0.200 0.240 0.808 0.763

✓ 0.111 0.354 0.832 0.793
✓ 0.279 0.110 0.774 0.742

✓ 0.239 0.260 0.927 0.813

✓ ✓ ✓ 0.191 0.219 0.815 0.771

ing boxes for these objects, considering their joints being
manipulated to the fullest extent, and use these expanded
bounding boxes for guidance calculation. We show the
quantitative results of our guided substitution for articulated
objects in the Living Room setting in Tab. 4. Results show
the collision rate with articulated objects is much higher
than that with rigid objects (compared with the collision rate
shown in Tab. 3). And our model shows a great improve-
ment over previous methods. We visualize the qualitative
results of our guided substitution for articulated objects in
Fig. 4 and leave more visualizations in the supplementary.

4.4. Ablation Study on Guidance

We conduct ablative studies on our proposed guidance func-
tions in the Living Room setting in Tab. 5. Given that these
guidance functions serve different roles in layout optimiza-
tion, they may exhibit potential conflicts with each other. As
shown in Tab. 5, the Colobj and Rout metrics have a negative
impact on each other because the collision guidance pushes
objects apart while the floor plan guidance pushes objects
closer to fit in the scene. However, we managed to strike
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Figure 5. Ablation on Guidance. Results of different guidance with floor-plan conditions. For each ablation on guidance functions, we
show four generated scenes (four columns) without guidance in the first row and mark the violation of constraints in red boxes. The second
row shows the improvement after considering guidance functions in green boxes.

a balance among these guidances, leading to improvements
on each corresponding metric. We provide qualitative visu-
alizations illustrating the effect of each guidance in Fig. 5.

5. Conclusion

In this paper, we introduce PHYSCENE, a guided condi-
tional diffusion model for physically interactable scene syn-
thesis. To ensure the physical plausibility and interactivity
of the generated scenes, we devise novel guidance functions
converting constraints on object collision, room layout, and
interactivity to guidance within each inference step in the
diffusion process. Our experimental results demonstrate
consistent performance improvement over state-of-the-art
baseline models on physical plausibility and interactivity

metrics, showcasing the effectiveness of our designed guid-
ance functions and the generation pipeline.

Future work Due to data limitations, PHYSCENE is
presently restricted to considering only limited room types,
without incorporating small objects. This limitation poses
a significant obstacle to the applicability of these scenes in
embodied AI tasks, particularly those involving small ob-
ject manipulation such as pick and place tasks. We leave
this area as an important focus for future research.
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Supplementary Material

A. Algorithm Details
A.1. Details of Parameters

We introduce the details of α̂t in Eq. (1). Given a data sam-
ple x0, we can define a forward diffusion process by adding
noise. Each forward diffusion process adds Gaussian noise
with variance βt on xt−1, resulting in a new variable xt with
distribution q(xt|xt−1). This process can be formulated as:

q(xt|xt−1) = N (xt;µt =
√

1− βtxt−1,Σt = βtI).

Then we can formulate the diffusion process with

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1),

where q(x1:T ) means we apply q repeatedly from timestep
1 to T . To simplify this process, we define αt = 1 − βt,
α̂t =

∏t
s=0 αs, and ϵ, ϵ0, ..., ϵt−1 ∼ N (0, I). After repa-

rameterizing with α̂t, we have:

xt =
√
1− βtxt−1 +

√
βtϵt−1

=
√
αtxt−1 +

√
1− αtϵt−1

=
√
αt(

√
αt−1xt−2 +

√
1− αt−1ϵt−2) +

√
1− αtϵt−1

=
√
αtαt−1xt−2 +

√
1− αtαt−1ϵ

=...

=
√
αtαt−1...α1x0 +

√
1− αtαt−1...α1ϵ

=
√

α̂tx0 +
√
1− α̂tϵ.

This reflects the derivation between xt and x0 in Eq. (1).

A.2. Details of Reachability Guidance

As mentioned in Sec. 3, we provide the detailed algorithm
for calculating the reachability guidance in Algorithm 2.

B. Data Processing
B.1. 3D-FUTURE

The original 3D-FUTURE dataset contains object CAD
models that are not watertight, which can not be used for
calculating collision directly. To solve this problem for eval-
uating physical collision between objects, we re-mesh each
object model in Blender to compute the collision rate. Some
examples of re-meshed models are shown in Fig. A.1, where
models on the left are original CAD models in 3D-FUTURE
and those on the right are the re-meshed models. Despite

Algorithm 2: Reachability Guidance

Module: Reachability guidance function φreach(·|F),
search algorithm A∗(·), indicator function 1(·).

Input: Floor plan F , 3D object bboxes {b1, ..., bN}
where N is the number of objects, embodied agent
’s width d.

//Generate gaussian cost map
W = 1(F) //Init walkable area
C = ¬1(F) · MAX VALUE //Init cost map
for i = 1, · · · , N do

b2Di = MAPTO2D(bi)
W = W − 1(DILATE(b2Di ,d/2))
//Add Gaussian cost for each object
C = C + GAUSSIAN(b2Di )

end
//A∗ shortest path search
{c1, ..., cM} = FINDCONNECTEDAREA(W )
{p1, ...,pM} = FINDCENTER({c1, ..., cM})
//Randomly choose pstart and pend

Pathshortest = A∗(C,pstart,pend)
{bagent

j }Lj=1 = GETAGENTBOX(Pathshortest)
// Reachability Guidance
φreach(x|F) = −

∑N
i=1

∑L
j=1 IoU3D(bi, b

agent
j )

return φreach(x|F)

the perceptual similarity between models provided and re-
meshed, most provided samples contain hollows inside that
forbid collision calculation.

B.2. GAPartNet
To simulate the interaction between robots and articulated
objects, we build upon the object CAD models and URDF
files provided in GAPartNet. Specifically, we generate the
articulated object’s states from close to open according to
the URDF file and record the sequential process into an in-
tegrated mesh. As shown in Fig. A.2, we show the origi-
nal object CAD model on the left and the integrated mesh
covering articulated object states on the right. In our exper-
iments, we use the integrated mesh to compute the collision
rate between articulated objects and also use this integrated
mesh to compute the opening size of articulated objects for
guidance calculation.

B.3. Retrieval Categories
As our method still primarily depends on retrieving ob-
ject models for generating the final scene, we combine as-
sets from the 3D-FUTURE and GAPartNet datasets for re-
trieval. In Fig. A.4 we show the utilized categories in the
3D-FUTURE dataset with their corresponding asset num-
bers. We build a mapping between the 3D-FUTURE ob-



Figure A.1. Original 3D-FUTURE model v.s. re-meshed model. We show examples of re-meshed models. Models on the left model
are the original CAD model in 3D-FUTURE, and on the right are the re-meshed models. Despite the perceptual similarity, the re-meshed
models fill in the hollow area for collision calculation.

Figure A.2. Original GAPartNet model v.s. sequential model. The original CAD models are always in closed status. To simulate the
interactive situation, we open the furniture and record the sequential process in an integrated mesh. The left model shows the original
furniture, while the right one is the sequential model. We use the sequential model to compute the collision rate of articulated objects.

Figure A.3. Examples of articulated objects in GAPartNet dataset. We visualize some models of StorageFurniture and Table. The
articulated models have various appearances and different joint types such as revolute and prismatic. Each piece of furniture has several
joints for interaction.

ject assets and GAPartNet to align interactive categories be-
tween two datasets, such as wardrobe in the 3D-FUTURE,
shown in orange, for the category of StorageFurniture in
the GAPartNet. Fig. A.5 shows the category distribution
of GAPartNet models, where StorageFurniture and Table

take the largest proportion of this dataset. For example, the
number of StorageFurniture is 324 out of the whole dataset
number 1045. The articulated models have various appear-
ances and different joint types such as revolute and pris-
matic. Each piece of furniture has several joints for inter-



Figure A.4. Category distribution in 3D-FUTURE dataset.
We show the utilized categories in 3D-FUTURE dataset with as-
set numbers. We choose interactive categories such as wardrobe,
shown in orange, to retrieve GAPartNet model.

action. We visualize some models of StorageFurniture and
Table in GAPartNet in Fig. A.3.

C. Additional Results

C.1. Physical Implausible Scenes in 3D-FRONT

As briefly discussed in Tab. 1, we provide further qualita-
tive visualizations on the violation of physical plausibility
in 3D-FRONT scene data in Fig. A.6. As shown from the
visualizations, some of the scenes used for learning exhibit
significant violations of physical plausibility, including ob-
ject collisions and object-out-of-room scenarios.

Figure A.5. Category distribution in GAPartNet dataset. We
show the category distribution of GAPartNet model, where Stor-
ageFurniture and Table take the largest proportion of this dataset.
These two categories, as shown in orange, are used to composite
interactable scenes with cross-dataset retrieval.

Table A.1. Comparison against the original 3D-FRONT
dataset on collision rate. Both ATISS and DiffuScene have
higher collision rates than the 3D-FRONT dataset, while ours is
lower than 3D-FRONT in most cases.

Data
Bedroom Living Room Dining Room

Colobj Colscene Colobj Colscene Colobj Colscene

3D-FRONT 0.214 0.42 0.206 0.625 0.209 0.57

ATISS 0.248 0.46 0.316 0.85 0.591 0.96
DiffuScene 0.228 0.43 0.198 0.69 0.160 0.55

PhyScene(Ours) 0.187 0.36 0.191 0.63 0.151 0.53

C.2. Guidance on Different Agent Size

The reachability guidance is adaptive to different agent
sizes. We use 0.2, 0.3, and 0.5 as the agent size separately,
where the unit of size is the meter. We show guidance re-
sults with different agent sizes in each row and evaluate
each guided result on different agent sizes ( shown in each
column). Here we show the guidance results in Fig. A.9
with the corresponding walkable map. It shows guidance
on size 0.2 is not suitable for agent size 0.5, where the agent
can only reach half of the room. And guidance on size 0.5
expands the walkable area to suit the agent in size of 0.5 and
make the whole room reachable.



Figure A.6. Visualization on physically implausible scenes in 3D-FRONT. We show original 3D-FRONT scenes with physical and
interactive failure cases. The red, purple, and blue boxes respectively indicate collisions between objects, objects outside the floor plan
and unreachable areas to the embodied agent. Here we set the floor plan in gray color without texture.
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Figure A.7. Gradient scale varying with the denoising step.

D. Comparison with 3D FRONT

Meanwhile, in Tab. A.1 we show models training on 3D-
FRONT dataset can not get rid of the collision prior ex-
isted in the training dataset. Both ATISS and DiffuScene
have higher collision rates on three types of rooms than
3D-FRONT. However, our PhyScene performs lower scores
than 3D-FRONT. The result shows posterior optimization,

such as physical and interactive guidance, is necessary to
dismiss the unreasonable prior such as collision.

E. Guidance Details
We visualize the gradient scale of each denoising step in
Fig. A.7. The gradient of xt decreases continuously during
the denoising process, while the gradient of x0 (predicted



Figure A.8. Visualization results of PhyScene on 3D Front. The
first two rows and the last two rows are the scene synthesis results
of the Bedroom and Dining Room respectively.

at each step) has a rapid decline at the beginning and inten-
sively changes in the middle stage. We visualize the lay-
out trajectory at each step and find the layout shrinks to the
vicinity of the floor plan at the beginning stage and changes
from chaos to order in the middle stage. The layout fine-
tunes itself with slight changes at the final steps. According
to this observation, we add guidance on the final steps. The
results also confirm that adding guidance on the final steps
performs the best.

When adding guidance to the data, our guidance is calcu-
lated by bounding box, including object size, location, and
angle. The purpose is to make the layout more physically
plausible and interactable. So we only calculate the gradi-
ent of location and angle for guidance to move objects into
a more intractable position. Noting that guiding on size will
lead to rather small sizes (thickness) of objects.

F. Collision with Finer 3D Representations
In the collision guidance, we calculate the guidance ob-
jective on 3D bounding boxes of objects in Eq. (6). We
have also considered other finer representations (e.g., oc-
cupancy field). As the generation pipeline involves a non-
differentiable object retrieval process from the generated
object metadata (i.e., location, scale, etc.), using these finer
3D representations introduces non-trivial difficulty in model
optimization. Nevertheless, we tried to use bounding boxes
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Figure A.9. Reachability guidance results with different agent
sizes. We show the effectiveness of reachability guidance and the
influence of the agent size. We compare walkable maps of differ-
ent agent sizes both in guidance and in evaluation, which are 0.2,
0.3, and 0.5 separately. The unit of size is the meter.

as representations for optimization while occupancy field
collisions as indicators for loss calculation, i.e., using the
following guidance function:

φcoll(x) = −
∑

i,j,i ̸=j

IoU3D(bi, bj)1(OF(oi,oj)),

where 1(OF(oi,oj)) checks if two objects have collided
occupancy fields. This objective penalizes bounding box
collisions only for objects that are collided in their corre-
sponding occupancy fields.

As shown in Fig. A.10, using occupancy fields as indi-
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Figure A.10. Comparison of different 3D representations in collision guidance.

cators can slightly improve the granularity of collision con-
sidered. However, as guidance calculation is required in
multiple diffusion steps, computing the collision for two oc-
cupancy fields significantly increases the computation over-
head (55 times slower). Therefore, we leave this exploration
to find a better balance between speed and granularity using
finer 3D representations as an important future work.

G. Agent Interaction
In the reachability guidance introduced in Sec. 3.3, we
only consider the walkable area as it is hard to unify guid-
ance functions for object interactions, especially with vari-
ous planners/modules required for different purposes (e.g.,
grasping, motion planning). However, as a preliminary at-
tempt, we can extend the current pipeline to incorporate
interaction constraints with proper simplifications. To en-
sure the articulated object interaction, we can use the same
reachability guidance function while now 1) enlarging ob-
ject bounding boxes to the maximum degree (fully opened)
for recalculating the walkable map, 2) planning the shortest
path from a walkable position to the end position of inter-
actable object parts (e.g., drawer handles), and 3) applying
the guidance to move the obstacle objects on this path. Sim-
ilarly, we can model other interactions with rigid objects
(e.g., sit) by planning the shortest path to the interactive ar-
eas (e.g., space in front of the chair) correspondingly in the
guidance function.

With this simplified estimate, we can improve the inter-
activeness rate (measured by whether robots could reach
the end position of object parts when being maximum inter-
acted) from 0.101 to 0.143. Given our flexible synthesize-
with-guidance designs, we believe more fine-grained and
effective constraints could be seamlessly integrated into the
generation pipeline and will continue to explore this topic
in the future.

H. Diffusion v.s. Transformer
ATISS uses an autoregressive model with an end vector to
stop predicting new furniture, while we find the object num-
ber might be very large, such as predicting 33 objects in a
bedroom. In contrast, the diffusion model uses a fixed num-
ber of vectors and generates the objects’ layout together.
The predicted objects are embedded with overall informa-
tion about the entire scene as well as inter-object relation-
ships.

I. Additional Visualization
We provide additional qualitative visualization for the ef-
fectiveness of guidance functions in Fig. A.11. We also
conduct experiments with basic floor plans (i.e., rectangles)
in rooms from ProcTHOR and generate scenes with articu-
lated objects. We provide the visualization of the generated
results in Fig. A.12.
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Figure A.11. Comparison of PhyScene synthesis without and with guidance. The first two columns and the last two columns are the
scene synthesis results without and with guidance respectively.

Figure A.12. Generated scenes with articulated objects. We show scene synthesis results with diverse layouts and random floor textures.
Each scene is embedded with several articulated objects.
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