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Abstract. 3D vision-language (3D-VL) grounding, which aims to align
language with 3D physical environments, stands as a cornerstone in
developing embodied agents. In comparison to recent advancements in
the 2D domain, grounding language in 3D scenes faces two significant
challenges: (i) the scarcity of paired 3D-VL data to support grounded
learning of 3D scenes, especially considering complexities within diverse
object configurations, rich attributes, and intricate relationships; and (ii)
the absence of a unified learning framework to distill knowledge from
grounded 3D data. In this work, we aim to address these major challenges
in 3D-VL by examining the potential of systematically upscaling 3D-VL
learning in indoor scenes. We introduce the first million-scale 3D-VL
dataset, SceneVerse, encompassing 68K indoor scenes and comprising
2.5M vision-language pairs collected from both human annotations and
our scalable scene-graph-based generation approach. We demonstrate that
this scaling allows for a unified pre-training framework, Grounded Pre-
training for Scenes (GPS), for 3D-VL learning. Through extensive experi-
ments, we showcase the effectiveness of GPS by achieving state-of-the-art
performance on existing 3D visual grounding and question-answering
benchmarks. We also show that the data scaling effect is not limited to
GPS, but is generally beneficial for models on tasks like 3D semantic
segmentation. The vast potential of SceneVerse and GPS is unveiled
through zero-shot transfer experiments in challenging 3D-VL tasks.

Keywords: 3D Vision-Language · Data Scaling · Grounded Scene Un-
derstanding

1 Introduction

The foundation of human cognitive development lies in the grounding of lan-
guage within the physical world [53, 81, 108]. Recent progress in Large Language
Models (LLMs) [10,11, 83] has markedly promoted the alignment between vision
and language [3,59,75] utilizing billion-scale vision-language datasets [79,107].
However, with these advancements predominantly focusing on the 2D domain,
the grounded understanding of 3D physical environments remains in an incipi-
ent stage [1, 5, 16]. Recognizing the pivotal role of grounded 3D experiences in
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SCENE CAPTION
“In this scene, there is a fray flat floor. 
A bar is standing on the floor, with … 

The room is also designed …”

OBJECT CAPTION
“This is a big cotton sofa against the 
wall. It is made of genuine leather.”

OBJECT REFERRAL
“The ottoman is on the carpet next to 

the double bed in the bedroom.”

Fig. 1: Overview of SceneVerse. A million-scale 3D vision-language dataset that
comprises over 68K various 3D indoor scenes and 2.5M aligned scene-language pairs in
the form of scene caption, object caption, and object referral.

shaping human cognition [7, 8], there is a compelling need to focus on exploring
vision-language learning in the context of 3D scenes.

Seeking insights from success in 2D vision-language (2D-VL) learning, a major
factor to the success was the notable scale-up of paired vision-language data [15,
52, 79]. However, applying this experience directly from 2D to 3D is fraught
with challenges. Primarily, 3D data collection heavily relies on the scanning
device, making it inherently much more complex and expensive than gathering
2D images. Despite steady efforts to increase the volume of 3D scene data [9,
24, 66, 98], most datasets remain limited to thousands of scenes, substantially
lagging behind the scale of existing 2D datasets. This gap is further widened
by the inherent complexities of 3D scenes, which feature a multitude of object
instances with diverse attributes, varying arrangements, and intricate inter-object
relationships. These unique aspects of 3D scenes not only make the accurate
description of objects and their relations more challenging but also considerably
increase the number of language descriptions required for thorough scene depiction.
Consequently, this presents a significant challenge in gathering sufficient and
high-quality paired scene-language data for grounded scene understanding.

To confront these challenges, we propose SceneVerse, the first million-
scale dataset aimed at advancing 3D vision-language (3D-VL) learning for
grounded scene understanding. At the scene level, we unify 3D scene data from
existing datasets [9, 24,66,76,85], aligning scenes and annotations from various
capturing sources, and supplement the collection with synthetic scenes [28,106].
This compilation represents the most extensive 3D scene data gathered to date,
amounting to 68K scenes. For language, we first present 97K newly-annotated
referring expressions, the most extensive thus far. We additionally propose an
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automated generation pipeline utilizing 3D scene graphs [4,86] and LLMs to create
comprehensive, high-quality scene-language pairs. This refined collection, totaling
2.5M scene-language pairs, provides detailed and comprehensive descriptions of
both object-level and scene-level descriptions within the 3D scene.

We thoroughly investigate the potential offered by SceneVerse with large-
scale pre-training, introducing Grounded Pre-training for Scenes (GPS), a novel
and unified pre-training framework designed for scene and object-level alignment
without auxiliary losses. Through multi-level contrastive alignment, we achieve
significant performance boosts on 3D-VL tasks, such as grounding and question
answering, setting new state-of-the-art results via a simple and effective pre-
training process. We unveil the vast possibilities offered by SceneVerse and
GPS in 3D-VL tasks in a zero-shot transfer setting. Additionally, we show that
the scaling effect in SceneVerse is not limited to GPS, but generally benefits
models in tasks like 3D semantic segmentation. At last, we offer deeper insights
into the data-scaling in SceneVerse through extensive ablative experiments,
pointing out future directions. Our main contributions are as follows:
1. We introduce SceneVerse, the first million-scale 3D-VL dataset for grounded

scene understanding. SceneVerse encompasses 68K 3D scenes coupled
with 2.5M scene-language pairs, sourced through a combination of human
annotation and automated generation methods. This represents a significant
improvement in terms of data diversity and scale compared to prior datasets.

2. We propose GPS, a transformer-based model trained with multi-level scene-
text alignment that achieves state-of-the-art results on existing 3D-VL ground-
ing and question-answering benchmarks by pre-training on SceneVerse.

3. We demonstrate that with the data scale-up and model design, our pre-trained
GPS exhibit emerging zero-shot generalization capabilities in grounded scene
understanding. We also show that this scaling effect is not limited to GPS,
but is generally beneficial for models on tasks like semantic segmentation.

2 Related Work

Datasets for Grounded 3D Understanding Obtaining aligned 3D-language
data is a inherently difficult task. In 3D object modeling, pioneering works like
ShapeNet [14] sourced 3D assets from online repositories, leading to a proliferation
of high-quality 3D object datasets [23, 69, 91]. Notably, recent developments
include internet-scale data collection with Objaverse [26, 27], accompanied by
the integration of object-level captions [93] for 3D-language alignment. Models
trained on these datasets demonstrate an enhanced understanding of objects,
evident in classification [60], generation [61], and captioning tasks [63].

In contrast, developing datasets for grounded 3D scene understanding is even
more challenging due to the extensive requirements for scene acquisition and
annotation. Existing works curate RGB-D and scanned indoor scene datasets [9,13,
24,66,76,85] and synthetic scenes [28,50,95,106] used for benchmarking tasks like
3D object detection and segmentation [31,46,67,80,84]. These semantically labeled
scenes are subsequently used in fine-grained scene grounding tasks like object
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Table 1: Comparison of SceneVerse with existing 3DVL Datasets. Scen-
eVerse expands the data scale of prior work by order of magnitude. “VG” stands
for Visual Grounding, “QA” for Question Answering, “PT” for Pre-training and “MT”
for Multi-tasking. “Anno.” denotes language from human annotations and “Syn.” for
template-based or LLM generated descriptions.

Dataset 3D Task Obj. Scene Obj. Quality New Existing TotalScene Obj. Caption Caption Referral Check Anno. Syn. Anno. Syn.

ScanRefer [16]
| |

VG ✗ ✗ ✓ ✓ 52K - - - 52K
ReferIt3D [1] VG ✗ ✗ ✓ ✓ 42K 200K - - 242K
ScanQA [5] 1.5K 33K QA - - - ✓ 27K - - - 27K
SQA3D [65]

| |
QA - - - ✓ 33K - - - 33K

Multi3DRefer [104] VG ✗ ✗ ✓ ✓ - 10K 52K - 62K
Cap3D [63] - 666K VG ✗ ✓ ✗ ✗ 58K 666K - - 724K
ScanScribe [109] 3K 56K PT ✗ ✗ ✓ ✗ - 90K 94K 94K 278K
3D-LLM [40] 1.5K 186K MT ✓ ✓ ✓ ✗ - 659K - - 659K
EmbodiedScan [87] 5K 890K VG ✗ ✗ ✓ ✗ - 970K - - 970K
LEO [41] 3K 56K MT ✓ ✓ ✓ ✓ - 188K 235K 90K 513K

SceneVerse 68K 1.5M VG ✓ ✓ ✓ ✓ 96K 2.1M 94K 200K 2.5M

referral [1,16,104], captioning [17,19,22,99], vision-language-navigation [39,64,73,
88] and reasoning [5, 40, 65]. Recent works exploit the representation of 3D scene
graph (3DSG) [4,20,78,86], which concisely describes scenes with hierarchical
structures. This representation is notably advantageous for planning [2, 77] and
captioning [35], owing to its compatibility with LLMs for flexible description
generation [40,41]. Nonetheless, as shown in Tab. 1, most datasets are constrained
in both scene and language scales, underscoring the need for scaling up fine-grained
and aligned scene-language data to enhance grounded scene understanding.

Vision-Language Learning Recent years have witnessed tremendous progress
in 2D-VL [3, 21, 25, 57, 59, 75], empowered by transformer-based pre-training
models [11, 29, 72] and large-scale image-language datasets [15, 79]. A central
theme across 2D-VL domains is the effectiveness of data scaling [49], as demon-
strated by improved alignment and expanded capabilities in open-vocabulary
understanding [33,51,54,58] through a contrastive pre-training pipeline [75].

However, in grounded scene understanding, the primary challenge for models
has been the limited availability of paired 3D scene-language data, which restricts
the application of insights drawn from 2D-VL. Current models for 3D scene
grounding [6,18,37,43,45,62,92,97,105] heavily rely on task-specific knowledge in
both model and loss designs or advanced optimization strategies [109]. To bridge
this gap, there has been a growing emphasis on employing pre-trained 2D-VL
models for 3D-VL [36, 38, 74, 82, 93, 102, 103]. Yet, these models mostly draw
information available from 2D-VL models (e.g ., object attribute, affordance, etc.),
falling short on capturing crucial 3D information like object spatial relationships
which are necessary for more fine-grained tasks such as grounded human-scene [20,
44, 47, 48, 89, 90] and robot-scene interactions modeling [34, 55, 68, 70]. This urges
the need for a multi-level alignment between language and 3D scenes, particularly
regarding 3D-specific information. Considering the nascent stage of existing 3D
pre-training methods [30,94,109,110], we believe SceneVerse and GPS have
the potential to spearhead new avenues in 3D-VL research.
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3 SceneVerse

SceneVerse is designed for grounded scene understanding with 3D scenes
curated from diverse existing datasets of both real and synthetic environments.
Regarding language, we employ both human annotation and a novel automated
generation pipeline to collect comprehensive and high-quality language for both
object-level and scene-level descriptions. We provide details regarding data
collection in the following sections.

3.1 Scene Curation

To address the scarcity of available 3D scene data, we construct SceneVerse by
unifying 3D scene data from various existing datasets. We use real-world scene
datasets, including ScanNet [24], ARKitScenes [9], HM3D [76], 3RScan [85] and
MultiScan [66], alongside synthetic environments from Structured3D [106] and
ProcTHOR [28]. The inclusion of these synthetic datasets is mainly motivated by
their potential as scalable data sources for 3D-VL alignment. To ensure cohesion
across various sources, we conduct preprocessing steps such as room segmentation,
point subsampling, axis alignment, normalization, and semantic label alignment.
Each scan is represented by a point cloud P P RNˆ8, wherein each point is defined
by its 3D coordinates, RGB color, instance id, and semantic label. In total, we
curate 68, 406 3D scenes in SceneVerse.

3.2 Referral Annotation by Humans

In the curated scenes of SceneVerse, we present the most comprehensive set
of human-annotated, context-rich object referrals to date, serving as a valuable
benchmark for assessing grounded scene understanding capabilities. The human
annotations contain 96, 863 descriptions in ARKitScenes [9], HM3D [76] and
MultiScan [66]. During the annotation process, one human annotator was assigned
to write at least 20 words to distinctly refer to a single 3D object within a 3D scene.
Each referral text then undergoes independent verification by two additional
reviewers, both mandated to accurately locate the referenced object based on
the 3D scene and the annotated referral text. Any object referrals that do not
pass the verification by either reviewer are flagged for re-annotation.

3.3 3D Scene Graph Construction

Our 3D scene graph is defined as a hierarchical graph G “ pV, Eq. Each node v P V
represents one distinct 3D object instance, parameterized by its centroid pi P R3

and bounding box size of bi “ pbx, by, bzq P R3. The edges E represent spatial
relationships between nodes. To construct the scene graph G, we instantiate
the nodes with the instance annotation from the point clouds and assign object
classes with their corresponding semantic labels. Following prior work [1, 86], we
consider the Vertical proximity, Horizontal proximity and Multi-object
Relationships as spatial relations. For a more detailed description of the scene
graph construction and relationship determination, please refer to supplementary .



6 B. Jia and Y. Chen et al.

Object ReferralScene Caption Object Caption
(a) 3D Scene (b) Language radar chart and sankey diagram of scene-language pairs

(c) Automated language generation

Sub-graph Context
{ 'scene_type': 'Bedroom’,

'object_count': {'nightstand':2, ...},

'relation': {'nightstand', 'on', 'floor'},

{'backback', 'in front of', bed}, ...}

BLIP2 Captions
1. A bed in a hotel room. (0.85)
2. A white comforter on a bed. (0.83)
3. A bed with a striped comforter. (0.83)
…
N. A picture of cat. (0.63)

Relationship Triplets
1. {'table', 'chair', 'left'},
2. {'bed', ('lamp', 'mini fridge'), 'between'}

Template-based Referral
1. The table is to the left of the chair.
2. It’s a bed in the middle of a lamp and the mini fridge.

Summary
Prompt: Provide a summary for a scene from a given 
scene graph delimited by triple backticks, …
Response: In this bedroom, there are two nightstands, ... 
The backpack is in front of the nightstand as well. The room 
appears to be functional, with the nightstands providing 
storage space and the telephone for communication. 

Summary
Prompt: Summarize the captions below. The summary    
should be a description of the {object}. Focus on the 
{object}’s attributes, like color, shape, material, etc. 
Identify and correct the potential errors …
Response: The bed is in a hotel room with a striped  
comforter. It has a white comforter and a blanket on it. 
The bed is also in a room with a bedside table.

Rephrasing
Prompt: Rewrite the following sentence using one random 
sentence structure. Focus on the location and relationships 
about the {target_object}, …
Response:
1. The table is situated to the left of the armchair.
2. The bed occupies the space between the lamp and the 
mini fridge, creating a cozy atmosphere.

Multiview Images

Type-token ratio

Unique
words

Total
words

Average
words

Annotated LLM-refined Template-based

N-gram
entropy

ProcTHOR (36K)

Structured3D (21K)

ARKitScenes (4K)

HM3D (2K)

ScanNet (1K)

3RScan (1K)

MultiScan (0.2K)

Template-based (1.3M)

LLM-refined (1M)

Annotated (19K)

3D Sub-graph

Fig. 2: SceneVerse collection and statistics. Given a 3D scene (a), our automated
pipeline (c) generates three types of description including scene caption, object caption
and object referral. (b) SceneVerse data comparison and composition.

3.4 Language Generation with LLMs

The scene-language pairs in SceneVerse aim to capture varying aspects of
the 3D scene, including detailed object attributes in object captioning, spatial
relationships between objects in object referral, and global scene descriptions
in scene captioning. Based on 3D scene graphs, we utilize both templates and
LLMs to automatically generate descriptions on these three granularities.
Object Captioning Object captions aim to provide detailed descriptions of an
object’s visual and physical properties, facilitating object-level grounding with
its distinctive features. Given the multi-view images, we utilize the point cloud
of the object v P V to identify its occurrence in the images through rendering.
The images are then cropped with the rendered bounding boxes and processed
through BLIP2 [56] to generate initial object captions. We select the top 10
sentences with the highest CLIP [75] similarity score and minimal occlusion and
utilize an LLM to obtain a refined and coherent summary of the captions. The
detailed object captioning pipeline is illustrated in supplementary .
Object Referral Object relationship captions refer to objects by articulating
their spatial relationships in the scene. Spatial relationship triplets pvi, vj , eijq

are first extracted from the constructed 3D scene graph. We design various
templates to generate descriptions for each relationship type, assigning the entities
in the form of ptarget-object, spatial-relation, anchor-object(s)q. This results in
examples like “the chair is next to the armchair”, “facing the sofa, there is a
suitcase far to the right of the shoes”, and “the fridge is between cabinet and
sofa”. Our designed templates span passive and active tenses, as well as inversion
clauses, contributing to the richness of the generated text. To enhance the
descriptions’ naturalness, we employ LLM for sentence rephrasing. Statistics for
the descriptions before and after rephrasing are presented in Fig. 2 (b).
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Scene Captioning The scene-level captions emphasize global information, por-
traying the key objects in the scene along with their attributes and functionalities.
We use the constructed 3D scene graph and prompt LLMs to generate these
captions. We random sample a subset of edges and nodes from the scene graph
each time as the scene context to enhance the diversity of scene captions. The
object counts are also provided as LLM prompts, together with the room type
and object attributes if such annotations are available in the dataset.

3.5 Data Quality and Statistics

Data Quality The 96K human-annotated set of SceneVerse is collected
through AMT, where 82 humans are employed for annotation and 18 for verifica-
tion. All final annotations passed the reference verification, with a re-annotation
rate of 4.8%. For our automatic language generation pipeline, we conduct ex-
tensive prompt tuning and iterate with human feedback for LLMs on object
captioning, summary, and rephrasing. To verify the efficacy of the pipeline, we
conduct a quality check where 12K generated object-level descriptions are ran-
domly selected for human verification. Results demonstrate a 96.93% pass rate,
surpassing that in ReferIt3D [1] with 86.1% pass rate on 2K samples.

Statistics In total, SceneVerse comprises a total of 68, 406 room-level 3D
scans, with the source composition shown in Fig. 2 (b). The dataset contains
1.5M object instances ranging in 2290 object categories. Our generated 3D scene
graph comprises 21 types of relationships following prior work [1, 86]. For the
language descriptions, we generate 1M template-based texts and 1M sentences
rephrased by Llama [83] and GPT-3.5 [71]. As can be seen from the radar chart
and examples in Fig. 2, the diversity of the LLM-refined data, particularly in
sentence length and variety, closely aligns with the characteristics of annotated
descriptions, surpassing the template-based data. Together with existing sources
(294K) and our newly annotated set (96K), SceneVerse contains 2.5M scene-
language pairs in total. All the rephrasing and summary prompts, along with
the complete set of relationships, are detailed in supplementary .

4 Grounded Pre-training for Scenes

In this section, we introduce GPS, an efficient transformer-based model trained
with multi-level contrastive losses for aligning 3D scenes and texts. As shown
in Fig. 3, we echo the language descriptions collected at different granularities
to form contrastive objectives at both object-level, referral-object-level, and
scene-level in GPS. We describe the design of each level in the following sections.

4.1 Object-level Grounding

Given a 3D scene point cloud S, we use an off-the-shelf 3D object segmentation
model to decompose it into a bag of N objects S “ to1,o2, ¨ ¨ ¨ ,onu

N
i“1. We extract
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Object Captions
“An wooden classic guitar”
“A bed with blue sheets”
“A L-shape leather sofa”
“A black chair with wheels”

Scene Caption
“This scene is a functional 
and organized apartment 
with various objects for 
daily activities. There are 
5 cabinets, 1 bed, 3 trash 
cans, 1 microwave and 1 
TV. The cabinets are in 
front of the trash cans and 
next to the counter…”
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Object-level

Scene-level

Referral-object-level

Object Referrals
“A silver bread toaster 
placed next to the fridge.”
“A microwave placed next 
to the fridge on the upper 
side of the cabinets.”
“A white trash can and it is 
on the left of the sink”
“A curtain next to the bike”

Fig. 3: Overview of GPS model. We use contrastive alignment at three levels Lobj,
Lscene, and Lref and a masked language modeling objective LMLM for model learning.

object features tfO
i u with an object point cloud encoder and text features tfT

i u

by feeding object-captions tT obj
i u into a frozen language model. Following [93],

we perform cross-modal alignment on the object features and text features via:

Lobj “ ´
1

2

ÿ

pp,qq

˜

log
exp

`

Dobjpp, qq
˘

ř

r exp pDobjpp, rqq
` log

exp
`

Dobjpp, qq
˘

ř

r exp pDobjpr, qqq

¸

, (1)

where Dobjpp, qq “ pfO
p fT

q {τq denotes the dot product between object and text
features and pp, qq denotes a pair of aligned object-text pair in the training batch
and r iterates over all object-text pairs in the training batch. Similar to CLIP [75],
we use a learnable temperature parameter τ to facilitate model learning.

4.2 Scene-level Grounding

With aligned object features, we encode the scene by incorporating object spa-
tial locations into the extracted object features. Specifically, we use a spatial
transformer model to encode extracted object features tfO

i u with their spatial
location features tliu following [18,109]:

fS “ SpatialAttnptfO
i u, tliuq

where tfS
i u denotes the feature of object oi after encoding with spatial location

features. To perform scene-level alignment, we operate on these scene-level object
features tfS

i u and align it with the scene caption T scene. Specifically, we feed
the object features into a projection layer and use max-pooling over all object
features to obtain the scene feature gS . Similar to object-level grounding, we
pass the scene caption through a tunable language model to obtain text feature
gT and perform scene-level contrastive alignment through:

Lscene “ ´
1

2

ÿ

pp,qq

ˆ

log
exp pDscenepp, qqq

ř

r exp pDscenepp, rqq
` log

exp pDscenepp, qqq
ř

r exp pDscenepr, qqq

˙

,

(2)
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where Dscenepp, qq “ pgS
p g

T
q {τq denotes the dot product between scene feature

gS
p and scene caption feature gT

q for each pair of aligned scene-text pairs in the
training batch and r iterates over all scene-text pairs in the training batch.

4.3 Referral-object-level Grounding

To model the relationships revealed in referring expressions, we employ a self-
attention-based reasoning transformer for grounding object referrals in scenes.
This transformer takes in scene-object features tfS

i u and an object referral T ref

and performs self-attention to learn relationships between text descriptions and
object relationships. We use the same tunable language encoder as in scene-level
grounding for extracting per-object referral features. We pass this text feature
together with scene-object features into the self-attention transformer to obtain
the aligned object features hS

i and the sentence-level referral feature hT . We
then perform the referral-object-level contrastive alignment following:

Lref “ ´ log
exp

`

h̄ShT {τ
˘

ř

p exp
`

hS
ph

T {τ
˘ , (3)

where h̄S denotes the feature of the referred object, p iterates over all objects
within the same scene. Notably, in contrast to inter-scene contrast that was done
in object- and scene-level alignment, we force the selection of positive pairs to
be within the same scene to provide intra-scene contrast for fine-grained object
grounding. This mimics the success of intra-image and inter-image contrasts
commonly used for region-word alignment in 2D-VL models [101].

To learn the multi-level alignment between 3D scenes and language, we first
train the point cloud encoder with an object-level grounding objective to obtain
a good feature initialization for grounding objects in scenes. During the scene
grounding stage, we train our inter- and intra-scene objectives together with a
masked language modeling loss LMLM over the inputted object-referral texts to
tune the parameters within the language encoder and self-attention transformer.
Above all, the learning of GPS could be summarized as optimizing:

L “ Lobj ` Lscene ` Lref ` LMLM.

5 Experiments

In this section, we present experimental results addressing the following questions:
1. How effective is the data scaling in SceneVerse for 3D visual grounding?

Does the scale-up benefit common 3D-VL tasks (e.g ., 3D question answering,
open-vocabulary 3D semantic segmentation) and pre-training-based models?

2. How well is the GPS pre-training pipeline for 3D-VL tasks? Does it exhibit
similar properties of 2D-VL models in 3D-VL tasks?

3. What is offered by SceneVerse and GPS and what is missing?

In the following sections, we describe in detail the model performance regarding
these key topics. Due to the page limit, we direct readers to the supplementary
for implementation details, qualitative results, and more experimental analyses.
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Table 2: 3D visual grounding results on Nr3D, Sr3D, and ScanRefer. We
use “pre-train” for our model trained on SceneVerse w/o additional fine-tuning, and
“fine-tune” for its data-specific fine-tuned version. Best results are highlighted in bold.

Method
Nr3D Sr3D ScanRefer Acc@0.5

Overall Easy Hard V-Dep. V-Indep. Overall Easy Hard V-Dep. V-Indep. Overall Unique Multiple

3DVG-Trans [105] 40.8 48.5 34.8 34.8 43.7 51.4 54.2 44.9 44.6 51.7 34.7 60.6 28.4
TGNN [42] 37.3 44.2 30.6 35.8 38.0 45.0 48.5 36.9 45.8 45.0 29.7 56.8 23.2
TransRefer3D [37] 48.0 56.7 39.6 42.5 50.7 57.4 60.5 50.2 49.9 57.7 - - -
InstanceRefer [100] 38.8 46.0 31.8 34.5 41.9 48.0 51.1 40.5 45.8 48.1 32.9 66.8 24.7
FFL-3DOG [32] 41.7 48.2 35.0 37.1 44.7 - - - - - 34.0 67.9 25.7
LAR [6] 48.9 58.4 42.3 47.4 52.1 59.4 63.0 51.2 50.0 59.1 - - -
SAT [97] 56.5 64.9 48.4 54.4 57.6 57.9 61.2 50.0 49.2 58.3 30.1 50.8 25.2
3D-SPS [62] 51.5 58.1 45.1 48.0 53.2 62.6 56.2 65.4 49.2 63.2 37.0 66.7 29.8
3DJCG [12] - - - - - - - - - - 37.3 64.3 30.8
BUTD-DETR [45] 54.6 60.7 48.4 46.0 58.0 67.0 68.6 63.2 53.0 67.6 39.8 66.3 35.1
MVT [43] 59.5 67.4 52.7 59.1 60.3 64.5 66.9 58.8 58.4 64.7 33.3 66.5 25.3
ViL3DRel [18] 64.4 70.2 57.4 62.0 64.5 72.8 74.9 67.9 63.8 73.2 37.7 68.6 30.7
EDA [92] 52.1 58.2 46.1 50.2 53.1 68.1 70.3 62.9 54.1 68.7 42.3 68.6 37.6
3D-VisTA (scratch) [109] 57.5 65.9 49.4 53.7 59.4 69.6 72.1 63.6 57.9 70.1 41.5 70.9 34.8
3D-VisTA [109] 64.2 72.1 56.7 61.5 65.1 76.4 78.8 71.3 58.9 77.3 45.8 75.1 39.1

Ours (scratch) 58.7 67.0 50.9 55.8 59.8 68.4 70.5 63.4 53.1 69.0 40.4 71.3 34.7
Ours (pre-train) 55.2 62.8 48.0 45.5 58.8 74.1 76.4 68.5 54.1 75.0 47.1 77.4 41.6
Ours (fine-tuned) 64.9 72.5 57.8 56.9 67.9 77.5 80.1 71.6 62.8 78.2 48.1 77.9 42.7

5.1 3D Visual Grounding

Settings We evaluate our model on three commonly-used datasets for 3D visual
grounding: ScanRefer [16], Nr3D, and Sr3D [1]. For Nr3D and Sr3D, we follow
Achlioptas et al . [1] and report the grounding accuracies of models using ground-
truth object masks. For ScanRefer, we follow Zhu et al . [109] and use Mask3D [80]
to generate object proposals. Results are reported as Acc@0.5 to evaluate the
correctness of predictions whose object bounding boxes overlap the ground truth
with IoU ą 0.5. For comparisons, we compare with existing baselines by providing
the results of pre-trained GPS and dataset-specific fine-tuned GPS. Please see
more details in the supplementary .

Results and Analyses As shown in Tab. 2, GPS trained on SceneVerse
achieves state-of-the-art results on all existing 3D-VL grounding benchmarks.
Initially, when GPS is trained directly on the training sets of benchmark datasets,
labeled as Ours (scratch), it underperforms compared to existing models that
employ more complex structures or loss designs. This result underscores the data-
intensive nature of the contrastive alignment paradigm. However, when presented
with extensive training data in SceneVerse, the results of our model without
additional fine-tuning, i.e., Ours (pre-train), significantly improves and already
achieves state-of-the-art results on benchmarks like ScanRefer. Moreover, the
dataset-specific fine-tuned model, i.e., Ours (fine-tuned), consistently outperforms
existing baselines with only a simple projection MLP added on top of the pre-
trained model, jointly optimized during fine-tuning without any other auxiliary
architecture or loss objective. These results underscore the strong potential of
both the SceneVerse and GPS for 3D-VL tasks.



Scaling 3D Vision-Language Learning for Grounded Scene Understanding 11

Table 3: Zero-shot transfer on existing
benchmarks. “SR” stands for ScanRefer.
Method Nr3D Sr3D SR@0.25 SR@0.5

3D-VisTA (scratch) 57.5 69.6 45.9 41.5
3D-VisTA (zero-shot) 35.2 31.2 33.2 29.6
3D-VisTA (zero-shot text) 43.1 36.1 41.1 36.4

Ours (scratch) 58.7 68.4 44.5 40.4
Ours (zero-shot) 32.4 33.3 35.2 31.1
Ours (zero-shot text) 41.9 38.1 40.7 35.8

Table 4: Zero-shot transfer on Scen-
eVerse-val. Evaluation uses GT object
proposals following Nr3D/Sr3D.
Method Overall Easy Hard V-Dep. V-Indep.

3D-VisTA (scratch) 40.7 53.1 21.6 37.3 44.3
3D-VisTA (zero-shot) 52.9 59.6 35.4 53.7 52.2
3D-VisTA (zero-shot text) 58.1 70.0 39.6 52.5 64.1

Ours (scratch) 38.5 50.2 20.8 33.7 43.9
Ours (zero-shot) 59.2 69.4 44.0 53.1 66.3
Ours (zero-shot text) 60.6 70.9 45.1 54.8 67.3

5.2 Zero-Shot Transfer

Settings To better evaluate the effectiveness of both the SceneVerse data and
the GPS model, we further perform zero-shot transfer experiments to test the
models’ capability in 4 benchmarks, ScanRefer, Sr3D, Nr3D, and SceneVerse-
val. We create SceneVerse-val using 8.5K annotated object referrals of 271
scenes in MultiScan, and randomly split the scenes following a 4:1 train / test split
for creating the held-out test set. We mainly consider 2 specific transfer settings in
our experiments: (i) zero-shot : models trained by removing all the scenes from the
target dataset, tested on held-out unseen scenes, and (ii) zero-shot text : Models
trained on data that include the training set of scenes from the target dataset,
yet tested exclusively with unseen scene-text distribution. Specifically, for the
zero-shot text setting, we use the generated texts in SceneVerse as fine-tuning
sources for the zero-shot model. We mainly compare our model against a recent
pre-training-based model 3D-VisTA. See more details on experimental setting
and implementation in the supplementary .

Results and Analyses We present the results of zero-shot transfer experiments
in Tab. 3 and Tab. 4 with the following key observations:

‚ Our GPS model demonstrates superior generalization to unseen scenes com-
pared to the 3D-VisTA model. In zero-shot transfer scenarios, our model
consistently outperforms 3D-VisTA across established benchmarks and Scen-
eVerse-val. This indicates the effectiveness of contrastive alignment over
traditional classification objectives, aligning with the advancements seen in
2D-VL models for open-vocabulary grounding and transfer capabilities

‚ SceneVerse dataset substantially enhances 3D-VL grounding capabilities
through zero-shot transfer, especially when provided with relatively limited
training data, i.e., SceneVerse-val. As demonstrated in Tab. 4, there is
a significantly improved performance when comparing models trained on
SceneVerse in a zero-shot manner to those trained from scratch. This
indicates that SceneVerse can effectively capture knowledge for general
3D scene grounding. Consequently, this underscores its potential as a go-to
pre-training dataset for 3D-VL tasks.

‚ The impact of our extensive collection and scalable generation of scene-text
pairs is further evidenced by the results in the zero-shot text setting. Notably,
as shown in Tab. 3, these automatically generated scene-text pairs supply
ample knowledge for comprehending the scene distribution. This contributes
significantly to the substantial improvement over the zero-shot performance.
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Table 5: 3D question answering re-
sults on ScanQA and SQA3D. We re-
port EM@1 score on ScanQA and SQA3D
evaluation sets.

Model
ScanQA

SQA3D
val w/obj w/o obj

ScanRefer+MCAN [5] 18.6 20.6 19.0 -
ScanQA [5] 20.3 23.5 20.9 46.6
SQA3D [65] - - - 47.2

3D-VisTA [109] 22.4 27.0 23.0 48.5
3D-LLM [40] 20.5 19.1 - -

Ours 22.7 25.0 23.5 49.9

Table 6: Exisiting 3D backbones pre-
trained on SceneVerse for open-
vocabulary 3D semantic segmentation on
ScanNet. “SPUNet” denotes SparseUNet pro-
posed in [94].

Model Network mIoU ∆ mAcc ∆

OpenScene [74] SPUNet16 57.2 - 69.9 -
PLA [30] SPUNet16 17.7 - 33.5 -

RegionPLC [94] SPUNet16 56.9 - 75.6 -
RegionPLC+SceneVerse SPUNet16 58.2 +1.7% 77.3 +2.2%

OpenScene [74] SPUNet32 57.8 - 70.3 -
PLA [30] SPUNet32 19.1 - 41.5 -

RegionPLC [94] SPUNet32 59.6 - 77.5 -
RegionPLC+SceneVerse SPUNet32 61.0 +2.3% 79.7 +2.8%

5.3 Additional 3D-VL Tasks

Settings We evaluate the effectiveness of GPS and SceneVerse on additional
3D-VL tasks: (i) 3D question answering (3D-QA) on ScanQA [5] and SQA3D [65],
and (ii) open-vocabulary 3D semantic segmentation (OV-Seg) on ScanNet.

‚ In the 3D-QA task, we follow Zhu et al . [109] and evaluate models over the
exact match metic (EM@1) on the validation and test sets of ScanQA, as well
as the test set of SQA3D. We pre-train GPS on SceneVerse and fine-tune
the model on the 3D-QA dataset to compare with state-of-the-art models.

‚ In the OV-Seg task, as GPS builds upon an object-centric design and thus
is not directly applicable to semantic segmentation, we consider testing the
effectiveness of SceneVerse on improving existing 3D models. Specifically,
we follow the open-vocabulary semantic segmentation settings proposed by
Yang et al . [94] and report the mIoU and mAcc score. We compare with
existing works by pre-training the RegionPLC [94] model on SceneVerse.

Results and Analyses We present the results of 3D-QA experiments in Tab. 5
and the results of OV-Seg experiments in Tab. 6. The analyses are as follows:

‚ As shown in Tab. 5, our model achieves state-of-the-art results on both
benchmarks, outperforming recent strong pre-training-based baselines like
3D-VisTA and 3D-LLM. As SceneVerse currently contains only descriptions
of objects and scenes, we believe involving more types of language descriptions
(e.g ., question-answer pairs, dialogues) is a promising direction for further
improving model performance on these downstream tasks.

‚ As shown in Tab. 6, we observe consistent performance improvement of
existing 3D backbone models on this task when pre-trained with SceneVerse
data. This result validates that the collected data in SceneVerse can
effectively boost the performance of existing models on scene understanding
tasks. We further provide results of state-of-the-art 3D models that are pre-
trained on SceneVerse on the close-vocabulary 3D semantic segmentation
task in the supplementary .

5.4 Ablative Studies and Discussion

In this section, we present further discussions on both the data collected in
SceneVerse and the GPS model design. We aim to elucidate the effects of
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Fig. 4: Model performance v.s. data
scale. Plots show that models consistently
improve in both the pre-train and zero-shot
transfer settings on ScanRefer and SceneV-
erse-val with data scaling-up.

Table 7: Ablation on text data
source used in model pre-training.
All models are tested on ScanRefer with
no additional finetuning.

Template LLM Anno. Acc@0.25 Acc@0.5

✗ ✗ ✗ 43.5 38.4
✓ ✗ ✗ 50.9 46.1
✓ ✓ ✗ 51.1 46.3
✓ ✓ ✓ 52.0 47.1

Table 8: Cross domain transfer results
of models pre-trained on real and synthetic
datasets. “S3D” stands for Structured3D.
Real Synthetic SceneVerse-val S3D ProcTHOR

All ✗ 64.8 37.1 43.4
✗ S3D 7.0 85.1 16.1
✗ ProcTHOR 4.2 16.3 91.0

Table 9: Ablation on model design
on SceneVerse-val. We use “Obj-
lvl”, “Scene-lvl” to denote object and
scene alignment loss, and “MLM” for the
mask language modeling loss.
Obj-lvl. MLM Scene-lvl. Overall Easy Hard

✗ ✗ ✗ 64.8 75.4 48.7
✓ ✗ ✗ 65.2 77.1 47.4
✓ ✓ ✗ 62.4 73.4 45.8
✓ ✓ ✓ 66.9 77.8 50.3

data scaling and show more clearly its effectiveness in 3D scene understanding.
Regarding the experimental settings and more results discussion, refer to the
supplementary . The following points are specifically discussed in this section:

How important is data-scaling? We conduct ablation studies over the amount
of data used while pre-training GPS. We consider the model trained with 1

8 , 1
4 , 1

2
of SceneVerse to show the effectiveness of data-scaling on model performance
in the pre-train and zero-shot transfer settings in ScanRefer and SceneVerse-val.
As shown in Fig. 4, we observe consistent performance improvement over the
increase of data scale for both settings. We provide additional experiments in the
supplementary to show that such scaling effect is not only beneficial for 3D-VL
grounding but also for other 3D tasks like semantic segmentation [80,96].

How is the generated data compared with human-annotated data?
We assess the performance of models trained using various scene-text sources,
specifically focusing on their performance in the ScanRefer dataset without addi-
tional fine-tuning. As shown in Tab. 7, models trained with our template-based
generated texts and Large Language Model (LLM)-refined texts show signifi-
cant improvements over models trained solely on ScanRefer. More importantly,
these variants of our model already achieve state-of-the-art results compared
with previous baselines. This indicates the effectiveness of our text-generation
pipeline. Finally, we observe that adding human-annotated data is still beneficial
for model performance. However, the improvement is relatively marginal over
models trained on our generated data.

What is the role of the synthetic scenes in this scale-up process? With
synthetic data providing large-scale and diverse scene data for 3D-VL tasks,
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we evaluate the models’ domain transfer (Sim2Real) capability. Specifically, we
compare models trained on all real scenes in SceneVerse against models trained
exclusively on two synthetic subsets of SceneVerse, i.e., Structured3D and
ProcTHOR. As shown in Tab. 8, models trained on synthetic subsets demonstrate
remarkable performance on their corresponding test sets while suffering when
transferred to real or other synthetic scenes. In contrast, the model trained
on real scene-text pairs exhibits less performance drop when generalizing to
synthetic scenes. This result affirms the domain gap between real and synthetic
scenes in 3D-VL grounding and shows that a simple scale-up in the number of
scenes is insufficient when naturalness can not be guaranteed. Considering the
scalability of our language generation pipeline and the scaling effect shown in
our experiments, the rate-determining step for further scaling-up 3D-VL comes
to the collection of diverse, high-quality, and realistic scenes that capture natural
3D scene distributions.

How important is the design of each module in GPS? We provide ablative
analyses of our multi-level contrastive alignment design in Tab. 9. We mainly
consider removing objectives in our model to reveal the effectiveness of each
level of alignment. We choose the referral-object-level alignment objective as the
default setting and consider removing: (i) object-level alignment objective, (ii)
masked language modeling objective, and (iii) scene-level alignment objective.
When removing the object-level alignment objective, we learn the object point
cloud encoder with the referral-object-level alignment and without pre-training.
As shown in Tab. 9, we test different models on the SceneVerse-val without
additional fine-tuning. Results show that the scene-level alignment objective is
crucial for referral object grounding in SceneVerse-val with the „5% perfor-
mance drop. Similar observations could be made for the model trained without
object-level alignment („2% drop) and masked language modeling objective
(„1.5% drop). These results affirm the effectiveness of our model design.

6 Conclusion

In this work, we scale up 3D-VL for grounded scene understanding. We present
SceneVerse, a million-scale 3D-VL dataset covering various scenes and multi-
level scene descriptions sourced from both human annotation and our proposed
scene-text generation approach. Utilizing SceneVerse, we propose Grounded
Pre-training for Scenes (GPS), a model trained with multi-level scene-language
contrastive alignment. Through extensive experiments, we show that GPS
achieves state-of-the-art results on common 3D-VL tasks including grounding
and question answering. We further conduct zero-shot transfer experiments to
show the improved generalization performances of GPS trained on SceneVerse
compared with previous baselines. We also demonstrate that the scaling effect of
SceneVerse is generally beneficial for existing 3D models on 3D-VL tasks like
semantic segmentation. We hope our efforts and successful scale-up attempts in
SceneVerse could pave the way for new research paradigms in 3D-VL.
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