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Abstract. The ability to distill object-centric abstractions from intricate
visual scenes underpins human-level generalization. Despite the signifi-
cant progress in object-centric learning methods, learning object-centric
representations in the 3D physical world remains a crucial challenge. In
this work, we propose SlotLifter, a novel object-centric radiance model
addressing scene reconstruction and decomposition jointly via slot-guided
feature lifting. Such a design unites object-centric learning representations
and image-based rendering methods, offering state-of-the-art performance
in scene decomposition and novel-view synthesis on four challenging syn-
thetic and four complex real-world datasets, outperforming existing 3D
object-centric learning methods by a large margin. Through extensive
ablative studies, we showcase the efficacy of designs in SlotLifter,
revealing key insights for potential future directions.

Keywords: Object-centric Radiance Fields · Slot-guided Feature Lifting

1 Introduction

The sense of objectness has been crucial to human cognition and generalization
capabilities [33, 47]. Despite recent advances in visual perception [5, 15, 27, 40],
achieving this generalization capability remains an unsolved challenge for existing
models [26]. The pivotal role of object-centric understanding in human cognition
necessitates models that can extract symbol-like object abstractions from complex
visual signals, forming object-centric representations without supervision.

Recent years have witnessed substantial progress in object-centric learn-
ing [23,30,36,44]. These methods aim to disentangle visual scenes into object-like
entities for object-oriented reasoning and manipulation. Despite the remarkable
progress made, existing approaches predominantly focus on 2D images. Since 2D
images provide only partial views of the 3D physical world, object representations
learned in the 2D domain are easily bound to 2D object attributes like colors [30],
neglecting crucial information about object shape, geometry, and spatial relation-
ships. Given the importance of these 3D attributes in representing the physical
world, it is essential for models to form object abstractions in 3D environments
to enhance understanding and interaction with the real world [16,42].
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To fulfill this goal, various attempts have been made to combine object-
centric methods such as Slot-Attention [36] with 3D representations. Among
them, multi-view image representations of 3D scenes [46,48,59] show competitive
results on synthetic datasets given their effectiveness in preserving detailed
object information. Nonetheless, translating the success of these methods from
synthetic data to real-world scenarios has been proven to be non-trivial [43].
Specifically, aggregating information from multi-view real images and drawing
correspondences between them naturally requires more intricate model designs.
Meanwhile, decoding from object-centric representations to 3D (e.g ., novel views)
places higher demands on the learned representations (i.e., slots) as it now needs
to infer about the 3D scene from a series of calibrated partial view projections.
Recently, OSRT [42] scales up the dimensions of slots and reconstructs scenes
with a Transformer-based encoder-decoder architecture, demonstrating powerful
decomposition and reconstruction ability in complex 3D scenes. However, its
success is built at the cost of inadmissible data and computation demands (64
TPUv2 chips for 7 days on 1M scenes). This urges the need for methods to
effectively align information from calibrated multi-view images and reconstruct
3D scenes from the compressed object-centric representations.

In this work, we present SlotLifter, a novel approach to learning object-
centric representations in 3D scenes, inspired by recent advances in image-based
rendering methods [6,12,22,50,51,56,58,62]. In contrast to previous object-centric
methods that focus solely on decoding information from slots, our method lever-
ages lifted 2D input-view feature(s) to initialize 3D point features, which interact
with the learned slot representations via a cross-attention-based transformer for
predicting volume rendering parameters. This design enhances the granularity of
details for novel-view synthesis while providing more explicit guidance for slot
learning. Additionally, with no auxiliary losses needed, SlotLifter relies only
on the reconstruction loss and naturally requires less sampling overheads during
training compared with existing 3D object-centric learning models like uORF
and OSRT. This results in significantly fewer computational resources needed
(„5x faster) to achieve desirable outcomes. Through comprehensive experiments
on four challenging synthetic and four complex real-world datasets, we observe
consistent and significant performance improvement of SlotLifter over existing
3D object-centric models on both scene decomposition („10+ ARI) and novel-
view synthesis („2+ PSNR). We further show the effectiveness of each module
through extensive ablative analyses and discussions, offering new insights into
developing object-centric learning techniques for complex 3D scenes. In summary,
our main contributions are as follows:

1. We propose SlotLifter, a novel model for unsupervised object-centric
learning in 3D scenes that effectively aggregates multi-view features for
object-centric decoding via an innovative slot-guided feature lifting design.

2. We comprehensively evaluate SlotLifter across four challenging synthetic
and four real-world benchmarks. Our results consistently show that SlotLifter
significantly outperforms existing methods in both scene decomposition and
novel-view synthesis, achieving state-of-the-art performance.



Slot-guided Feature Lifting for Learning Object-centric Radiance Fields 3

3. We conduct extensive ablative analyses demonstrating SlotLifter’s poten-
tial in object-centric learning and image-based rendering, especially given
its superior performance on established complex real-world datasets (e.g .,
ScanNet and DTU) against state-of-the-art image-based rendering meth-
ods. We anticipate that our findings will stimulate further advancements in
overcoming current limitations of 3D object-centric models.

2 Related Work

Object-centric Learning Prior studies in object-centric learning [3, 4, 13,19,
20,23–25,35, 36, 64] have demonstrated proficiency in disentangling visual scenes
into object-centric representations primarily on synthetic datasets, but they often
struggle with handling complex real-world scenes. Notably, Slot-Attention [36]
has fostered many powerful variants [5, 10, 17, 28, 30, 34, 43, 44, 52, 54] across
various tasks and domains. However, these methods typically focus solely on
learning object-centric representations from static images, thereby overlooking
motion and 3D geometry information crucial for decomposing real-world complex
scenes in an object-centric manner. Recognizing the potential benefits of motion
information, [18, 32, 45] utilize video data to carve out object representations,
demonstrating the effectiveness of the additional information provided beyond
static images in the context of object-centric learning. Nonetheless, the use of 3D
geometry information for object-centric learning has been largely left untouched.
In this work, we pinpoint these crucial aspects by integrating advancements in
image-based rendering with Slot-Attention, aiming to improve the acquisition of
3D object-centric representations within complex real-world environments.

Novel-view Synthesis with NeRFs Recent advances in Neural Radiance Field
(NeRF) methods [2,39,49] have shown notable success in novel-view synthesis and
3D scene reconstruction. However, a significant drawback of these methods is the
scene-specific long training time needed for optimizing each scene. The demand for
better time efficiency has led to the emergence of generalizable NeRF methods [6,8,
12,22,50,51,56,58,62]. These methods aim to synthesize novel views based on given
images of scenes without per-scene optimization. For instance, PixelNeRF [58] and
IBRNet [51] adopt volume rendering techniques, using features from nearby views
to reconstruct novel views. MVSNeRF [6] constructs cost-volumes from nearby
views for novel-view rendering. PointNeRF [56] leverages latent point clouds as
anchors for radiance fields to improve both efficiency and performance. GNT [50]
uses a transformer to integrate features from different views and demonstrates
the powerful capability for generalizable novel-view synthesis. In contrast to these
methods, SlotLifter leverages an object-centric multi-view feature aggregation
module and point-slot mapping module to more effectively encode 3D complex
scenes for generalizable novel-view synthesis.

3D Object-centric methods Previous methods [42,46,48,59] have attempted to
extend Slot-Attention to 3D scenes for scene decomposition and novel-view synthe-
sis. uORF [59], ObSuRF [48], sVORF [41], and uOCF [37] combine Slot-Attention



4 Y. Liu and B. Jia et al.

Point-slot Joint
Decoding

Point-slot
Mapping

𝑊

σ

MLP𝐹! 𝑐

Volume
Rendering

Allocation
Transformer

%𝐶

𝑀Mask

Color

𝛔

ray distance

Rendering

Slot Attention

SlotsSource View

Target View

Slot Encoding

Feature
Encoder

Feature
Lifting

Fig. 1: SlotLifter overview. SlotLifter extracts slots from input view(s) during
slot encoding. It then lifts 2D feature maps of input view(s) to initialize 3D point features,
which serve as queries in the allocation transformer for point-slot joint decoding. This
process yields the point-slot mapping Wp, density σ, and the slot-aggregated point
feature Fs via an attention layer. Finally, SlotLifter uses these results for rendering
novel-view images and segmentation masks via volume rendering.

(or its variants) with NeRF [39] and use rendering losses as objectives for unsu-
pervised slot learning. Additionally, OSRT [42] and COLF [46] further introduce
Slot-Attention into the light field model to improve both model performance
and inference speed. Nevertheless, uORF, COLF, and uOCF necessitate extra
auxiliary losses, such as adversarial loss and LPIPS loss with a prolonged training
period, which prevents downsampling rays and needs more computation. ObSuRF
and uOCF require training with depth as a guidance signal. OSRT suffers from
the heavy computation and training overhead required for properly reconstructing
views from input pose and image embeddings. In contrast, SlotLifter lifts the
2D multi-view feature to 3D and uses these point features to query multi-view
information from the learned slots effectively. From our experiments, SlotLifter
not only outperforms previous 3D object-centric methods for unsupervised scene
decomposition and novel-view synthesis but also obtains higher training efficiency.

3 SlotLifter

In this section, we introduce our model, SlotLifter, that combines object-
centric learning modules with image-based rendering techniques. Our goal is
to effectively learn scene reconstruction and decomposition by reconstructing
input-view image(s). We present an overview of our SlotLifter model in Fig. 1.

3.1 Background

Object-centric learning via Slot-Attention Given N input feature vectors
X P RNˆDf , Slot-Attention [36] maps them to a set of K output vectors (i.e.,
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slots) S P RKˆDs via an iterative attention mechanism. The K slots compete
to explain the input features X by computing the attention matrix A between
S and X. The attention matrix is then used to aggregate feature vectors X
using a weighted mean. These aggregated features are embedded into slots S by
iteratively updating as follows:

A “ softmax

˜

kpXq ¨ qpS̃qT
?
D

¸

S “ UθpS̃, W T vpXqq, where Wi,j “
Ai,j

řN
m“1 Am,j

.

(1)

qp¨q, kp¨q, vp¨q are linear projections, S̃ denotes random initialized slots and
Uθp¨q represents the iterative update function often implemented with GRU [9],
LayerNorm [1] and a residual MLP. As pointed out by Jia et al . [30], this iterative
update process could be susceptible to instability when propagating gradients
back into the iterative process. They therefore proposed a bi-level method, dubbed
BO-QSA, to improve the optimization within Slot-Attention with learnable slot
initialization instead of random sampled ones.

Neural Radiance Fields Given rays tru of a camera view, NeRF samples points
along each ray and represent 3D scenes with a feature field FΘ : px,dq Ñ pc, σq

mapping the 3D location x and the view direction d to color c and volume
density σ, and then renders the color of each ray via volume rendering [38]:

Ĉprq “

N
ÿ

i“1

Tir1 ´ expp´σiδiqsci, (2)

where Ti “ expp´
ři´1

j“1 σjδjq and δi is the distance between adjacent volumes
along a ray. While NeRF achieves impressive novel-view synthesis quality, it
adds stringent demands on model training given the number of points needed for
approximating Ĉprq in Eq. (2). It also exhibits no generalization capabilities as
each scene is optimized individually without shared prior knowledge.

3.2 Slot-guided Feature Lifting

Scene Encoding To render a novel target view It, we leverage Slot-Attention to
encode scene representations from L source view(s) tIlu

L
l“1 (L “ 1 for single-view

input) and lift 2D features to 3D for approximating the latent feature field FΘ. We
start by extracting 2D feature maps tF 2D

l P RHˆWˆDfuLl“1 from each source view.
Next, we follow Eq. (1) to obtain object-centric scene features S “ ts1, ¨ ¨ ¨ , sKu P

RKˆDs from these input 2D features via Slot-Attention. Inspired by image-based
rendering methods, we consider constructing an additional 3D scene feature
field by lifting 2D input-view features for capturing the fine-grained details in
the input. Specifically, for target view It, we sample points P P RNˆ3 along
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each ray r and project each 3D point p “ px, y, zq onto the image coordinates
πppq “ px1, y1q to obtain its set of corresponding 2D features Fliftppq by:

Fliftppq “
“

F 2D
1 rπppqs, ¨ ¨ ¨ ,F 2D

L rπppqs
‰

.

Without adding further ambiguity to the notations, we use Flift P RNˆLˆDf to
represent the feature field obtained for all points in P . After obtaining the lifted
point features Flift, we pool the multi-view features to obtain 3D point features:

Fp “ MLPprMeanpFliftq,VarpFliftqsq ` Ep, (3)

where Ep P RNˆDp are positional embeddings for preserving the spatial informa-
tion of 3D points. Notably, for single-view input, we ignore the variance term
and let Fp “ MLPpFliftq ` Ep. This feature serves a similar role as FΘ discussed
in Eq. (2), providing fine-grained 3D features with spatial location considered.

Point-slot Mappping After scene encoding, given the slots S and the point
features Fp, we design a point-slot joint decoding process to leverage both point
and slot features for rendering. First, we calculate the point-slot mapping Wp,
identifying the points that a slot si P S contributes to. Specifically, we use
a cross-attention-based allocation transformer, leveraging point features Fp as
queries and slot representations S as keys and values to allocate slots to 3D
points. As some points map to vacant areas in the 3D space, we add an additional
learnable empty slot sH for these vacant points to query from. This process could
be summarized as:

S1 “ tsH, s1, ¨ ¨ ¨ , sku, F̃p “ CrossAttnpQ “ Fp,KV “ S1q.

After this process, the 3D point features F̃p contain information queried from
object-centric slot representations. Finally, we obtain the point-slot mapping and
the slot-aggregated point feature Fs via an attention layer following:

Fs “ WpS
1, where Wp “ softmax

˜

qpF̃pq ¨ kpS1qT
?
D

¸

.

We use qp¨q, kp¨q to denote linear projections, Wp P RNˆpK`1q for the mapping
weights from slots to points, D for the latent feature dimension. In essence, this
process aims to obtain decodable 3D representations from learned slots. We can
find the corresponding slot mapping (i.e., contribution) weight from W i

p for each
3D point pi, thereby predicting its slot assignment for scene decomposition.

Slot-based Density For notation purposes, we use Ap “ qpF̃pq¨kpS1qT through-
out the subsequent texts for simplicity. To provide more direct guidance to slots,
we use the attention weights Ap from the mapping module to estimate the density
value following [59]:

σi “ sumpW i,1:K`1
p d ReLUpAi,1:K`1

p qq, (4)
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where i denotes i-th point, d denotes Hadamard production, and Ai,1:K`1
p denotes

the attention weights of the last K slots, ignoring the first empty slot in S1. We
add a ReLU layer over Ap to suppress the contribution of slots less related to a
specific point F i

p in density prediction. Finally, we add Fs with the positional
embedding Ep and pass it into an MLP for predicting colors c. Similarly, given
the 3D point-slot mapping weight W i

p P RK of each point, SlotLifter is able
to render 2D segmentation masks M using the same rendering scheme:

c “ MLPpFs ` Epq, Cprq “

N
ÿ

i“1

Tir1 ´ expp´σiδiqsci,

Mprq “

N
ÿ

i“1

Tir1 ´ expp´σiδiqsW i
p,

(5)

where Ti “ expp´
ři´1

j“1 σjδjq and δi is the distance between adjacent volumes
along a ray following Eq. (2).

3.3 Training

Objective For training, we utilize the mean squared error (MSE) between the
rendered rays Cprq and the ground truth colors Ĉprq as our learning objective:

Lrecon “ }Cprq ´ Ĉprq}2.

Random Masking Although incorporating feature lifting into 3D object-centric
learning improves the utilization of 3D information, it also poses a significant
problem. Since both lifted point features Fp and slot features S originate from
2D multi-view images, the model can converge to degenerate scenarios, relying
solely on lifted features for rendering and ignoring the information in slots. We
avoid this degenerate case by randomly masking the lifted features in the sampled
points, using only positional embeddings Ep for these points to enforce alignment
between slots and 3D point grids. In implementation, we use a cosine annealing
schedule on the masking ratio from 0.99 to 0 for 30K steps.

4 Experiment

We present experimental results of SlotLifter on 4 synthetic and 4 com-
plex real-world datasets, evaluating its capability in novel view synthesis and
unsupervised scene decomposition. The experimental settings are as follows:

Datasets For synthetic scenes, we evaluate SlotLifter on 3 commonly used
datasets CLEVR-567, Room-Chair, and Room-Diverse proposed by uORF [59].
We further select a more complex variant of Room-Diverse, Room-Texture [37],
that provides synthetic rooms with real objects from ABO [11] for evaluating 3D
object-centric learning. For complex real-world scenes, we use Kitchen-Shiny [37],
Kitchen-Matte [37], ScanNet [14], and DTU MVS [29] to evaluate models’ capa-
bility on novel-view synthesis and scene decomposition.
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Table 1: Quantitative comparison for segmentation in synthetic scenes.
SlotLifter achieves the best performance on most metrics. Especially, when the
dataset complexity increases (e.g ., from Room-Chair to Room-Diverse), SlotLifter
makes remarkable improvements (10+ ARI). We report all models with (mean ˘

standard deviation) across 3 experiment trials except for sVORF where we report the
best performance (:) adapted from the paper.

Method

CLEVR-567 Room-Chair Room-Diverse

3D metric 2D metric 3D metric 2D metric 3D metric 2D metric

NV-ARIÒ ARIÒ FG-ARIÒ NV-ARIÒ ARIÒ FG-ARIÒ NV-ARIÒ ARIÒ FG-ARIÒ

Slot-Attention [36] - 3.5˘0.7 93.2˘1.5 - 38.4˘18.4 40.2˘4.5 - 17.4˘11.3 43.8˘11.7
uORF [59] 83.8˘0.3 86.3˘0.1 87.4˘0.8 74.3˘1.9 78.8˘2.6 88.8˘2.7 56.9˘0.2 65.6˘1.0 67.8˘1.7

BO-uORF [30] 78.4˘0.7 87.4˘0.5 89.2˘0.3 80.9˘0.2 82.2˘1.0 91.6˘2.3 62.5˘0.5 72.6˘0.2 76.8˘0.2
COLF [46] 55.8˘0.1 69.0˘0.4 92.4˘1.7 80.7˘0.1 85.6˘0.04 89.8˘0.1 52.5˘0.3 66.5˘0.4 64.7˘0.7

SlotLifter 87.0˘2.5 93.7˘1.1 91.3˘1.6 89.7˘0.5 92.6˘0.3 91.9 ˘0.3 77.5˘0.7 90.0˘0.8 84.3˘2.7

sVORF: [41] 81.5 82.7 92.0 87.0 87.8 92.4 75.6 78.4 86.6
SlotLifter: 89.0 94.6 93.1 90.3 92.9 92.1 78.1 90.6 86.7

Metrics We evaluate the quality of novel-view synthesis with three common
metrics: LPIPS [61], SSIM [53], and PSNR. In particular, we use LPIPSalex for
synthetic scenes and LPIPSvgg for real-world scenes to be consistent with previous
methods. Following [46, 59], we evaluate the quality of scene decomposition with
four metrics: Adjusted Rand Index (ARI), FG-ARI (i.e., ARI computed only on
foreground objects), NV-ARI (i.e., ARI on novel views), and NV-FG-ARI.

4.1 Object-centric Learning in Synthetic Scenes

Setup To perform a fair comparison between SlotLifter and existing methods,
we follow the setup of uORF [59] and use only one source view as input to
render the other novel views. As we only use a single source view, we modify the
multi-view feature aggregation to Fp “ MLPpFliftq ` Ep as discussed in Sec. 3.2.
We train our model using the Lion [7] optimizer with a learning rate of 5ˆ10´5

for 250k iterations. We use a batch size of 4 and sample 1024 rays for each scene.

Baselines We compare SlotLifter with previous state-of-the-art 3D object-
centric methods including uORF [59], COLF [46], and sVORF [41]. We also
report the results of the improved uORF (BO-uORF) introduced by Jia et al . [30]
as a competitive baseline in evaluating the results on these datasets.

Table 2: Quantitative comparison for
scene decomposition and novel view
synthesis on Room-Texture.

Method
Scece segmentation Novel view synthesis

NV-ARIÒ ARIÒ FG-ARIÒ LPIPSÓ SSIMÒ PSNRÒ

uORF [59] 57.8 67.0 9.3 0.254 0.711 24.23
BO-uORF [30] 60.4 69.7 35.4 0.215 0.739 25.26

COLF [46] 1.1 23.5 53.2 0.504 0.670 22.98
uOCF-N [37] 72.2 79.1 58.4 0.138 0.796 28.81
uOCF-P [37] 70.4 78.5 56.3 0.136 0.798 28.85

SlotLifter 79.3 86.0 70.7 0.131 0.858 30.68

Results and Analysis We evalu-
ate the performance of SlotLifter
for unsupervised scene decomposition
and present our quantitative results
in Tab. 1 and Tab. 2. SlotLifter
outperforms existing 3D object-centric
learning methods, achieving the best
performance across all datasets. We
also visualize qualitative results for
segmentation in Fig. 2 and Fig. 3. As
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Table 3: Quantitative comparison for novel-view synthesis in synthetic scenes.
SlotLifter outperforms existing methods on the majority of metrics in three datasets,
rendering novel views of much higher quality, especially for complex datasets.

Method
CLEVR-567 Room-Chair Room-Diverse

LPIPSÓ SSIMÒ PSNRÒ LPIPSÓ SSIMÒ PSNRÒ LPIPSÓ SSIMÒ PSNRÒ

NeRF-AE [59] 0.1288 0.8658 27.16 0.1166 0.8265 28.13 0.2458 0.6688 24.80
uORF [59] 0.0859 0.8971 29.28 0.0821 0.8722 29.60 0.1729 0.7094 25.96

BO-uORF [30] 0.0618 0.9260 30.85 0.0733 0.8938 30.61 0.1515 0.7363 26.96
COLF [46] 0.0608 0.9346 31.81 0.0485 0.8934 30.93 0.1274 0.7308 26.02
sVORF [41] 0.0211 0.9701 37.20 0.0824 0.8992 33.04 0.1637 0.7825 29.41

SlotLifter 0.0184 0.9680 36.09 0.0410 0.9358 34.63 0.1159 0.8479 29.97

shown in Tab. 1 and Tab. 2, SlotLifter significantly outperforms current
state-of-the-art methods by a large margin on all datasets. We also observe
from Fig. 2 and Fig. 3 that SlotLifter better handles occlusion between ob-
jects, offering more complete segmentation. Notably, compared with task-specific
auxiliary designs in current baselines (e.g ., adversarial loss used in uORF),
SlotLifter models each slot equivalently and relies solely on the reconstruction
loss Lrecon for achieving the good performance. We attribute this effectiveness to
our scene encoding design and provide more analyses in Sec. 4.3.

We also evaluate the capability of our SlotLifter for novel-view synthesis
and present our quantitative results compared with existing methods in Tab. 2,
Tab. 3, and visualize qualitative results in Fig. 2, Fig. 3. As shown in Tab. 2 and
Tab. 3, our model outperforms existing methods on almost all metrics across
the four datasets, rendering novel views of much higher quality, especially for
complex datasets. As visualized in Fig. 2 and Fig. 3, SlotLifter captures more
detailed texture, shape, and pose of objects compared with baseline models.

Additionally, compared to uORF [59] that needs to train for 6 days on Room-
Diverse with a single Nvidia RTX 3090 GPU, SlotLifter is more efficient,
requiring only 30 hours (5x speed up) training time. This is afforded by: (i) the
feature lifting design provides detailed information for rendering and leads to a
faster model convergence rate; (ii) the slot-based density prediction and rendering
in SlotLifter requires only 1 radiance field while models like uORF, uOCF,
and sVORF compute K fields for each slot; (iii) with no auxiliary losses on the
fully rendered image, SlotLifter only needs 1024 (or even 256) sampled rays
for training with the reconstruction loss, thus largely reducing the computation
overhead. Please refer to Tab. A.3 in the supplementary for more comparisons.

4.2 Object-centric Learning in Real-world Scenes

Setup To show the effectiveness of SlotLifter on real-world complex scenes, we
evaluate SlotLifter on Kitchen-Shiny and Kitchen-Matte following uOCF [37].
We use the same train/test split for these two datasets with single-view input
following settings in uOCF. Unlike uOCF which requires training with 2 stages
to learn object priors, we train SlotLifter with reconstruction loss in 1 stage.
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Fig. 2: Qualitative comparison on synthetic scenes. Compared to BO-uORF,
SlotLifter renders novel-view images and segmentation masks in much higher quality,
especially in detailed object attributes like color and shape (best viewed with zoom-in
for the highlighted details).

We also consider ScanNet [14] and DTU [29], which are well-established
datasets for evaluating generalizable novel-view synthesis [22,55,62], as more chal-
lenging real-world benchmarks to test models’ capability on processing complex
real-world scenes. For ScanNet, we follow the standard training and evaluation
scheme in existing works [55, 62], sample 100 scenes for training, and evaluate
our method on the 8 unseen testing scenes introduced. On DTU, we follow the
setup of PixelNeRF [58] and NeRFusion [62], train all models on the 88 training
scenes, and test on the 15 test scenes. For both ScanNet and DTU, we follow
the standard setting in generalizable novel-view synthesis and provide 4 source
nearby views selected according to previous work [6, 22, 50, 51, 56, 62] as inputs.

Baselines For evaluating object-centric learning, we compare our SlotLifter
with existing state-of-the-art 3D object-centric models, including uORF, BO-
uORF, COLF, and uOCF on Kitchen-Shiny and Kitchen-Matte. On ScanNet,
we mainly compare the SlotLifter with the improved uORF model for object-
centric learning as uOCF requires a two-stage training scheme with auxiliary
losses thus not directly comparable. We additionally add OSRT [42] as a powerful
baseline as it has demonstrated its effectiveness in decomposing complex scenes.

For generalizable novel-view synthesis, compare SlotLifter and state-of-the-art
generalizable NeRFs like NeRFusion [62] on ScanNet and DTU MVS. Addition-
ally, we re-train the recent state-of-the-art method GNT [50] for generalizable
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Table 4: Quantitative comparison for
novel view synthesis on Kitchen-Shiny and
Kitchen-Matte. SlotLifter presents signif-
icant improvements („4 PSNR) and the best
results on all perceptual scores.

Method
Kitchen-Shiny Kitchen-Matte

LPIPSÓ SSIMÒ PSNRÒ LPIPSÓ SSIMÒ PSNRÒ

uORF [59] 0.336 0.602 19.23 0.092 0.808 26.07
BO-uORF [30] 0.318 0.639 19.78 0.067 0.832 27.36

COLF [46] 0.397 0.561 18.30 0.236 0.643 20.68
uOCF-N [37] 0.055 0.842 27.87 0.055 0.841 28.25
uOCF-P [37] 0.049 0.862 28.58 0.043 0.867 29.40

SlotLifter 0.035 0.928 32.02 0.030 0.939 32.92

Table 5: Quantitative comparison
on ScanNet. : We use the official
implementations provided to re-train
and evaluate the models on ScanNet.

Method PSNRÒ SSIMÒ LPIPSÓ NV-FG-ARI Ò

IBRNet [51] 21.19 0.786 0.358 -
NeRFusion [62] 22.99 0.838 0.335 -
PointNeRF [56] 20.47 0.642 0.544 -
SurfelNeRF [22] 23.82 0.845 0.327 -

GNT: [50] 27.76 0.8791 0.2197 -

BO-uORF: [59] 12.72 0.3393 0.6975 0.0
OSRT: [42] 13.34 0.2746 0.6337 29.7

SlotLifter 28.36 0.9200 0.1891 31.1

GT uOCF Ours

Novel
View

Input
View

GT uOCF Ours

N/A

N/A

GT uOCF Ours

N/A

N/A
Room-Texture Kitchen-Shiny Kitchen-Matte

Fig. 3: Qualitative comparison on Room-Texture, Kitchen-Shiny, and
Kitchen-Matte. Compared to the SOTA method uOCF, SlotLifter renders novel-
view images and segmentation masks in higher quality, offering more complete seg-
mentation and more detailed textures (best viewed with zoom-in for the highlighted
details).

novel-view synthesis on ScanNet as a strong baseline to validate the effectiveness
of our method (see more implementation details in Appendix A.2).

Results and Analysis We present quantitative evaluations in Tab. 4 and Tab. 5,
and visualize qualitative results in Fig. 3 and Fig. 4. Similar to results in synthetic
datasets, we observe a consistent improvement in object-centric learning on real-
world datasets. In Kitchen-Shiny and Kitchen-Matte, as there is no ground truth
segmentation annotation available, we qualitatively compare SlotLifter with
existing methods in Fig. 3. We demonstrate that SlotLifter renders segmen-
tation masks with higher quality, offering more complete object segmentations.
The quantitative evaluation results on ScanNet in Tab. 5 also demonstrate that
SlotLifter outperforms existing 3D object-centric methods with more accurate
segmentation masks predicted as shown in Fig. 4. Notably, Fig. 4 also shows that
despite the relatively marginal performance gap (compared with improvements
in synthetic datasets) between OSRT and SlotLifter in NV-ARI-FG, OSRT



12 Y. Liu and B. Jia et al.

BO-uORF OSRT GNT Ours GT

N/A

N/A

Recon.

Seg.

Recon.

Seg.

Input

Fig. 4: Qualitative results on ScanNet. Our SlotLifter achieves the best per-
formance for novel-view rendering, even surpassing the recent state-of-the-art model
GNT, while BO-uORF and OSRT struggle to render novel-view images on ScanNet.

Table 6: Quantitative comparison on
DTU.

Method PSNRÒ SSIMÒ LPIPSÓ

PixelNeRF [58] 19.31 0.789 0.382
IBRNet [51] 26.04 0.917 0.190

MVSNeRF [6] 26.63 0.931 0.168
NeRFusion [62] 26.19 0.922 0.177

SlotLifter 26.75 0.896 0.157

Table 7: Sensitivity of random mask-
ing ratio scheduling.

Decay Steps PSNRÒ NV-ARIÒ ARIÒ FG-ARI Ò

0 29.89 74.4 85.8 43.6
10000 30.01 74.9 86.9 42.1
30000 29.80 77.5 90.3 84.8
60000 29.53 77.3 90.1 85.7
100000 28.68 76.4 89.4 83.6

generates uniformly distributed masks without properly separating the objects.
This originates from an unfair privilege of OSRT when calculating ARI as this
metric mainly considers coverage as an important factor. We provide further
analyses and discussions on improving SlotLifter for complex real-world scenes
in Appendix B.1.

As shown in Tabs. 4-6, we observe a consistent advantage of SlotLifter on
most datasets for novel-view synthesis. This includes outperforming state-of-the-art
methods dedicatedly designed for generalizable novel-view synthesis like Surfel-
NeRF and GNT. Meanwhile, Tab. 5 and Fig. 4 show that methods like BO-uORF
and OSRT struggle to render novel-view images in complex settings, achieving
only a PSNR of less than 14 with no meaningful rendered results. Notably,
OSRT achieves a PSNR of 27 on training scenes but fails to generalize to unseen
scenes (see more discussions in Appendix B.2). These results further validate the
effectiveness of SlotLifter compared with previous 3D object-centric learning
methods.
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Table 8: Ablations analysis of module designs in SlotLifter.

Method
Room-Diverse ScanNet

LPIPSÓ SSIMÒ PSNRÒ NV-ARIÒ ARIÒ FG-ARIÒ LPIPSÓ SSIMÒ PSNRÒ NV-FG-ARIÒ

w/o Feature Lift. 0.2537 0.7716 28.20 71.4 75.8 65.3 0.5622 0.5129 11.60 0.0
w/o Random Mask 0.1169 0.8470 29.89 74.4 85.8 43.6 0.1861 0.9208 27.86 17.63
w/o Slot Density 0.1180 0.8456 29.82 76.3 87.6 77.3 0.1937 0.9134 27.42 6.6

FullModel 0.1180 0.8454 29.80 77.5 90.3 84.8 0.1891 0.9200 28.36 31.1

4.3 Ablative Study

To investigate the effectiveness of our designs in SlotLifter, including scene
encoding, random masking, slot-based density, and the number of slots and
source views, we conduct ablative studies on both synthetic (Room-Diverse) and
real-world (ScanNet) scenes. We also investigate the effect of the number of
sampled rays and leave the results in Tab. A.4 in the supplementary.

Scene Encoding We consider removing the feature lifting operation and initial-
izing point features solely with positional embeddings, i.e., Fp “ Ep. As shown
in Tab. 8 and Fig. 5, the performance of both novel-view synthesis and scene
decomposition on Room-Diverse drops significantly without lifted multi-view
features, especially for LPIPS and FG-ARI. In fact, it is hard to establish the map-
ping between slots and 3D points via only positional information. This problem
is more severe in complex real-world scenes (e.g ., Scannet), where SlotLifter
struggles in rendering novel views without feature lifting, achieving only a PSNR
of 11.6. This issue is also shared by uORF and OSRT as presented in Sec. 4.2
and demonstrates the significance of the feature lifting design.

Random Masking As shown in Tab. 8 and Fig. 5, abandoning the random
masking scheme described in Sec. 3.3 slightly improves the rendering performance
(LPIPS, SSIM, PSNR) but significantly decreases the scene decomposition ca-
pability of SlotLifter, especially for FG-ARI. We also find that the model
sometimes converges to the degenerate scenario as discussed in Sec. 3.3 without
the random masking scheme, leading to a collapse in scene decomposition (i.e.,
uniform segmentation predictions) with ARI scores lower than 40. This affirms
our supposition that, without random masking, the model is likely to degenerate
and rely solely on lifted features for rendering, thereby ignoring the information
in slots. We also explore how the masking ratio decay scheduling influences
performance. As shown in Tab. 7, increasing decay steps slightly harms rendering
performance and significantly improves segmentation performance after a certain
amount of steps („10K steps). After the number of decay steps exceeds 30K,
continuing to increase the number of steps will only bring marginal improvement.

Slot-based Density As shown in Tab. 8, compared with using an additional
MLP layer for predicting the density value, using slot-based density slightly
improves the quality of novel-view synthesis on ScanNet and significantly improves
the performance of scene decomposition on both datasets, especially for ScanNet.
We attribute this effectiveness to the fact that the slot-based density is more
involved in point-slot interactions. This leads to more information propagation
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Novel View GT

Full Model

(c) w/o Slot Density(b) w/o Random Masking

(a) w/o Feature Lifting

Input View

Fig. 5: Visualization of model abla-
tion analysis. (a) Without feature lift-
ing, SlotLifter renders blurred images
and imprecise segmentation masks. (b)
Without random masking, SlotLifter
cannot segment objects correctly. (c) Us-
ing slot-based density helps SlotLifter
learn more accurate segmentation.
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Fig. 6: Ablative studies over the num-
ber of source views and slots. We set the
number of slots to 8 for different numbers of
source views and set the number of source
views to 4 for different numbers of slots.

to slots, thus improving the learned object-centric representations for accurately
segmenting foreground objects.

Sensitivity to Number of Slots and Source Views As discussed in Sec. 3.2,
SlotLifter can accept a various number of source views as input. We inves-
tigate how the number of slots and source views influences the performance of
SlotLifter on ScanNet. As shown in Fig. 6, SlotLifter is sensitive to the
number of slots, which is consistent with previous research on Slot-Attention. In
addition, the number of source views also has a significant impact on model per-
formance, as it influences both the extracted slots and the lifted 3D point features
which are essential components for slot-guided feature lifting in SlotLifter.

5 Conclusion

We present SlotLifter, an object-centric radiance field model for unsupervised
3D object-centric representation learning. Our SlotLifter employs slot-guided
feature lifting to improve the interaction between lifted input view features and
learned slots during decoding. SlotLifter achieves state-of-the-art performance
with large improvements on four challenging synthetic and four complex real-
world datasets for scene decomposition and novel-view synthesis and uses much
less training time, demonstrating its effectiveness and efficiency. Furthermore,
SlotLifter demonstrates superior performance for novel-view synthesis on
real-world datasets, underscoring its potential to narrow the gap to real-world
scenes.



Slot-guided Feature Lifting for Learning Object-centric Radiance Fields 15

Acknowledgement

We gratefully thank all colleagues from BIGAI for fruitful discussions. We would
also like to thank the anonymous reviewers for their constructive feedback. This
work reported herein was supported by Beijing Natural Science Foundation
(QY23126).

References

1. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint
arXiv:1607.06450 (2016)

2. Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Mip-nerf
360: Unbounded anti-aliased neural radiance fields. In: Proceedings of Conference
on Computer Vision and Pattern Recognition (CVPR) (2022)

3. Bear, D., Fan, C., Mrowca, D., Li, Y., Alter, S., Nayebi, A., Schwartz, J., Fei-Fei,
L.F., Wu, J., Tenenbaum, J., et al.: Learning physical graph representations from
visual scenes. In: Proceedings of Advances in Neural Information Processing Systems
(NeurIPS) (2020)

4. Burgess, C.P., Matthey, L., Watters, N., Kabra, R., Higgins, I., Botvinick, M.,
Lerchner, A.: Monet: Unsupervised scene decomposition and representation. arXiv
preprint arXiv:1901.11390 (2019)

5. Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., Joulin,
A.: Emerging properties in self-supervised vision transformers. In: Proceedings of
International Conference on Computer Vision (ICCV) (2021)

6. Chen, A., Xu, Z., Zhao, F., Zhang, X., Xiang, F., Yu, J., Su, H.: Mvsnerf: Fast
generalizable radiance field reconstruction from multi-view stereo. In: Proceedings
of International Conference on Computer Vision (ICCV) (2021)

7. Chen, X., Liang, C., Huang, D., Real, E., Wang, K., Liu, Y., Pham, H., Dong, X.,
Luong, T., Hsieh, C.J., et al.: Symbolic discovery of optimization algorithms. arXiv
preprint arXiv:2302.06675 (2023)

8. Chen, Y., Ni, J., Jiang, N., Zhang, Y., Zhu, Y., Huang, S.: Single-view 3d scene
reconstruction with high-fidelity shape and texture. In: Proceedings of International
Conference on 3D Vision (3DV) (2024)

9. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H., Bengio, Y.: Learning phrase representations using rnn encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

10. Choudhury, S., Laina, I., Rupprecht, C., Vedaldi, A.: Unsupervised part discovery
from contrastive reconstruction. Proceedings of Advances in Neural Information
Processing Systems (NeurIPS) (2021)

11. Collins, J., Goel, S., Deng, K., Luthra, A., Xu, L., Gundogdu, E., Zhang, X.,
Vicente, T.F.Y., Dideriksen, T., Arora, H., et al.: Abo: Dataset and benchmarks
for real-world 3d object understanding. In: Proceedings of Conference on Computer
Vision and Pattern Recognition (CVPR) (2022)

12. Cong, W., Liang, H., Wang, P., Fan, Z., Chen, T., Varma, M., Wang, Y., Wang,
Z.: Enhancing nerf akin to enhancing llms: Generalizable nerf transformer with
mixture-of-view-experts. In: Proceedings of International Conference on Computer
Vision (ICCV) (2023)

13. Crawford, E., Pineau, J.: Spatially invariant unsupervised object detection with
convolutional neural networks. In: Proceedings of AAAI Conference on Artificial
Intelligence (AAAI) (2019)



16 Y. Liu and B. Jia et al.

14. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In: Proceedings of Conference
on Computer Vision and Pattern Recognition (CVPR) (2017)

15. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T.,
Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is worth 16x16
words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929
(2020)

16. Driess, D., Xia, F., Sajjadi, M.S., Lynch, C., Chowdhery, A., Ichter, B., Wahid, A.,
Tompson, J., Vuong, Q., Yu, T., et al.: Palm-e: An embodied multimodal language
model. arXiv preprint arXiv:2303.03378 (2023)

17. Du, Y., Li, S., Sharma, Y., Tenenbaum, J., Mordatch, I.: Unsupervised learning
of compositional energy concepts. Proceedings of Advances in Neural Information
Processing Systems (NeurIPS) (2021)

18. Elsayed, G.F., Mahendran, A., van Steenkiste, S., Greff, K., Mozer, M.C., Kipf,
T.: Savi++: Towards end-to-end object-centric learning from real-world videos.
In: Proceedings of Advances in Neural Information Processing Systems (NeurIPS)
(2022)

19. Engelcke, M., Kosiorek, A.R., Jones, O.P., Posner, I.: Genesis: Generative scene
inference and sampling with object-centric latent representations. In: Proceedings
of International Conference on Learning Representations (ICLR) (2020)

20. Eslami, S., Heess, N., Weber, T., Tassa, Y., Szepesvari, D., Hinton, G.E., et al.: At-
tend, infer, repeat: Fast scene understanding with generative models. In: Proceedings
of Advances in Neural Information Processing Systems (NeurIPS) (2016)

21. Fridovich-Keil, S., Yu, A., Tancik, M., Chen, Q., Recht, B., Kanazawa, A.: Plenoxels:
Radiance fields without neural networks. In: Proceedings of Conference on Computer
Vision and Pattern Recognition (CVPR) (2022)

22. Gao, Y., Cao, Y.P., Shan, Y.: Surfelnerf: Neural surfel radiance fields for online
photorealistic reconstruction of indoor scenes. In: Proceedings of Conference on
Computer Vision and Pattern Recognition (CVPR) (2023)

23. Greff, K., Kaufman, R.L., Kabra, R., Watters, N., Burgess, C., Zoran, D., Matthey,
L., Botvinick, M., Lerchner, A.: Multi-object representation learning with iterative
variational inference. In: Proceedings of International Conference on Machine
Learning (ICML) (2019)

24. Greff, K., Rasmus, A., Berglund, M., Hao, T., Valpola, H., Schmidhuber, J.: Tagger:
Deep unsupervised perceptual grouping. In: Proceedings of Advances in Neural
Information Processing Systems (NeurIPS) (2016)

25. Greff, K., Van Steenkiste, S., Schmidhuber, J.: Neural expectation maximization.
In: Proceedings of Advances in Neural Information Processing Systems (NeurIPS)
(2017)

26. Greff, K., Van Steenkiste, S., Schmidhuber, J.: On the binding problem in artificial
neural networks. arXiv preprint arXiv:2012.05208 (2020)

27. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR)
(2016)

28. Hénaff, O.J., Koppula, S., Shelhamer, E., Zoran, D., Jaegle, A., Zisserman, A.,
Carreira, J., Arandjelović, R.: Object discovery and representation networks. In:
Proceedings of European Conference on Computer Vision (ECCV) (2022)

29. Jensen, R., Dahl, A., Vogiatzis, G., Tola, E., Aanæs, H.: Large scale multi-view
stereopsis evaluation. In: Proceedings of Conference on Computer Vision and
Pattern Recognition (CVPR) (2014)



Slot-guided Feature Lifting for Learning Object-centric Radiance Fields 17

30. Jia, B., Liu, Y., Huang, S.: Improving object-centric learning with query opti-
mization. In: Proceedings of International Conference on Learning Representations
(ICLR) (2023)

31. Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3d gaussian splatting for
real-time radiance field rendering. ACM Transactions on Graphics (TOG) 42(4)
(2023)

32. Kipf, T., Elsayed, G.F., Mahendran, A., Stone, A., Sabour, S., Heigold, G., Jon-
schkowski, R., Dosovitskiy, A., Greff, K.: Conditional object-centric learning from
video. In: Proceedings of International Conference on Learning Representations
(ICLR) (2022)

33. Lake, B.M., Ullman, T.D., Tenenbaum, J.B., Gershman, S.J.: Building machines
that learn and think like people. Behavioral and brain sciences 40, e253 (2017)

34. Lamb, A., He, D., Goyal, A., Ke, G., Liao, C.F., Ravanelli, M., Bengio, Y.: Trans-
formers with competitive ensembles of independent mechanisms. arXiv preprint
arXiv:2103.00336 (2021)

35. Lin, Z., Wu, Y.F., Peri, S.V., Sun, W., Singh, G., Deng, F., Jiang, J., Ahn, S.: Space:
Unsupervised object-oriented scene representation via spatial attention and decom-
position. In: Proceedings of International Conference on Learning Representations
(ICLR) (2020)

36. Locatello, F., Weissenborn, D., Unterthiner, T., Mahendran, A., Heigold, G., Uszko-
reit, J., Dosovitskiy, A., Kipf, T.: Object-centric learning with slot attention. In:
Proceedings of Advances in Neural Information Processing Systems (NeurIPS)
(2020)

37. Luo, R., Yu, H.X., Wu, J.: Unsupervised discovery of object-centric neural fields.
arXiv preprint arXiv:2402.07376 (2024)

38. Max, N.: Optical models for direct volume rendering. IEEE Transactions on Visual-
ization and Computer Graphics 1(2), 99–108 (1995)

39. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: Nerf: Representing scenes as neural radiance fields for view synthesis. Commu-
nications of the ACM 65(1), 99–106 (2021)

40. Oquab, M., Darcet, T., Moutakanni, T., Vo, H., Szafraniec, M., Khalidov, V.,
Fernandez, P., Haziza, D., Massa, F., El-Nouby, A., et al.: Dinov2: Learning robust
visual features without supervision. arXiv preprint arXiv:2304.07193 (2023)

41. QI, D., Yang, T., Zhang, X.: Slot-guided volumetric object radiance fields. In:
Proceedings of Advances in Neural Information Processing Systems (NeurIPS)
(2023)

42. Sajjadi, M.S., Duckworth, D., Mahendran, A., van Steenkiste, S., Pavetić, F., Lučić,
M., Guibas, L.J., Greff, K., Kipf, T.: Object scene representation transformer. In:
Proceedings of Advances in Neural Information Processing Systems (NeurIPS)
(2022)

43. Seitzer, M., Horn, M., Zadaianchuk, A., Zietlow, D., Xiao, T., Simon-Gabriel, C.,
He, T., Zhang, Z., Schölkopf, B., Brox, T., et al.: Bridging the gap to real-world
object-centric learning. In: Proceedings of International Conference on Learning
Representations (ICLR) (2023)

44. Singh, G., Deng, F., Ahn, S.: Illiterate dall-e learns to compose. In: Proceedings of
International Conference on Learning Representations (ICLR) (2021)

45. Singh, G., Wu, Y.F., Ahn, S.: Simple unsupervised object-centric learning for
complex and naturalistic videos. In: Proceedings of Advances in Neural Information
Processing Systems (NeurIPS) (2022)



18 Y. Liu and B. Jia et al.

46. Smith, C., Yu, H.X., Zakharov, S., Durand, F., Tenenbaum, J.B., Wu, J., Sitzmann,
V.: Unsupervised discovery and composition of object light fields. Transactions on
Machine Learning Research (TMLR) (2023)

47. Spelke, E.S., Kinzler, K.D.: Core knowledge. Developmental science 10(1), 89–96
(2007)

48. Stelzner, K., Kersting, K., Kosiorek, A.R.: Decomposing 3d scenes into objects via
unsupervised volume segmentation. arXiv preprint arXiv:2104.01148 (2021)

49. Tancik, M., Casser, V., Yan, X., Pradhan, S., Mildenhall, B., Srinivasan, P.P., Barron,
J.T., Kretzschmar, H.: Block-nerf: Scalable large scene neural view synthesis. In:
Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR)
(2022)

50. Varma, M., Wang, P., Chen, X., Chen, T., Venugopalan, S., Wang, Z.: Is atten-
tion all that nerf needs? In: Proceedings of International Conference on Learning
Representations (ICLR) (2022)

51. Wang, Q., Wang, Z., Genova, K., Srinivasan, P.P., Zhou, H., Barron, J.T., Martin-
Brualla, R., Snavely, N., Funkhouser, T.: Ibrnet: Learning multi-view image-based
rendering. In: Proceedings of Conference on Computer Vision and Pattern Recogni-
tion (CVPR) (2021)

52. Wang, Y., Shen, X., Hu, S.X., Yuan, Y., Crowley, J.L., Vaufreydaz, D.: Self-
supervised transformers for unsupervised object discovery using normalized cut. In:
Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR)
(2022)

53. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:
from error visibility to structural similarity. IEEE transactions on image processing
13(4), 600–612 (2004)

54. Wang, Z., Shou, M.Z., Zhang, M.: Object-centric learning with cyclic walks between
parts and whole. arXiv preprint arXiv:2302.08023 (2023)

55. Wei, Y., Liu, S., Rao, Y., Zhao, W., Lu, J., Zhou, J.: Nerfingmvs: Guided opti-
mization of neural radiance fields for indoor multi-view stereo. In: Proceedings of
International Conference on Computer Vision (ICCV) (2021)

56. Xu, Q., Xu, Z., Philip, J., Bi, S., Shu, Z., Sunkavalli, K., Neumann, U.: Point-nerf:
Point-based neural radiance fields. In: Proceedings of Conference on Computer
Vision and Pattern Recognition (CVPR) (2022)

57. Yang, J., Pavone, M., Wang, Y.: Freenerf: Improving few-shot neural rendering with
free frequency regularization. In: Proceedings of Conference on Computer Vision
and Pattern Recognition (CVPR) (2023)

58. Yu, A., Ye, V., Tancik, M., Kanazawa, A.: pixelnerf: Neural radiance fields from
one or few images. In: Proceedings of Conference on Computer Vision and Pattern
Recognition (CVPR) (2021)

59. Yu, H.X., Guibas, L.J., Wu, J.: Unsupervised discovery of object radiance fields.
In: Proceedings of International Conference on Learning Representations (ICLR)
(2022)

60. Zadaianchuk, A., Seitzer, M., Martius, G.: Object-centric learning for real-world
videos by predicting temporal feature similarities. In: Proceedings of Advances in
Neural Information Processing Systems (NeurIPS) (2023)

61. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable
effectiveness of deep features as a perceptual metric. In: Proceedings of Conference
on Computer Vision and Pattern Recognition (CVPR) (2018)

62. Zhang, X., Bi, S., Sunkavalli, K., Su, H., Xu, Z.: Nerfusion: Fusing radiance fields
for large-scale scene reconstruction. In: Proceedings of Conference on Computer
Vision and Pattern Recognition (CVPR) (2022)



Slot-guided Feature Lifting for Learning Object-centric Radiance Fields 19

63. Zheng, S., Zhou, B., Shao, R., Liu, B., Zhang, S., Nie, L., Liu, Y.: Gps-gaussian:
Generalizable pixel-wise 3d gaussian splatting for real-time human novel view
synthesis. arXiv preprint arXiv:2312.02155 (2023)

64. Zoran, D., Kabra, R., Lerchner, A., Rezende, D.J.: Parts: Unsupervised segmen-
tation with slots, attention and independence maximization. In: Proceedings of
International Conference on Computer Vision (ICCV) (2021)



Slot-guided Feature Lifting for Learning Object-centric Radiance Fields 1

SlotLifter: Slot-guided Feature Lifting for
Learning Object-centric Radiance Fields

Supplementary Material

A Implementation Details

A.1 SlotLifter

Architecture Design

Scene Encoding We employ a U-net-like encoder EΦ with ResNet34 [27] to
extract 2D image features, similar to IBRNet [51]. This architecture truncates
after layer3 as the encoder and adds two up-sampling layers with convolutions
and skip-connections as the decoder. Instead of extracting two sets of feature
maps for coarse and fine networks as IBRNet, we extract a shared feature map.
In addition, we concatenate multi-view images with their corresponding ray
directions and camera positions to provide more spatial information, enabling
slots to learn 3D information from 2D multi-view features via Slot-Attention.
Given extracted feature maps, we obtain slots via Slot-Attention and 3D point
features via feature lifting described in Sec. 3.2. We add the point positional
embedding Ep in Eq. (3), which considers point location p and ray direction d
simultaneously by:

Ep “ MLPpConcatprPosEmbppq,PosEmbpdqsqq,

where PosEmb is a Fourier transformation with a frequency of 10 while MLP is
used to fuse point location and ray direction information and project positional
embedding to the same dimension as point features.

Point-slot Joint Decoding Our point-slot joint decoding contains an allocation
transformer and an attention-based point-slot mapping module. The allocation
transformer consists of four transformer layers, and each layer includes a cross-
attention layer, a 1D convolution layer, and a self-attention layer. We use 1D
convolution and self-attention to model the relationship among points along a
ray. The design is based on the insight that spatially adjacent points are more
likely to be associated with the same slot. Additionally, We use the weighted
sum of attention weights to estimate the density value in Eq. (4). As this design
may restrict the scale of density by the attention weights between slots and point
features, the density obtained from Eq. (4) is multiplied by a learnable parameter
sσ to rescale it.

Hyperparameters and Training Details We train our SlotLifter by
sampling 1024 rays for each scene with a learning rate of 5 ˆ 10´5, a linear
learning rate warm-up of 10000 steps, and an exponentially decaying schedule.
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Table A.1: Training configuration for our SlotLifter. The values in parentheses are
adopted for the ScanNet and DTU datasets.

Training

Scene Batch Size 4 (2)
Ray Batch Size 1024

LR 5e-5
LR Warm-up Steps 10000

LR Decay Steps 50000
Max Steps 250K

Num. Source Views 1 (4)
Grad. Clip 0.5

Scene Encoding

Feature Dimension 64 (32)
Slot Dimension 256

Iterations 3
σ Annealing Steps 30000

Point-slot Decoding
Num. Layers 4

Attention Heads 4
Feature Dimension 64

Table A.2: Image resolution and the number of slots on different datasets.

Dataset CLEVR567 Room-Chair Room-Diverse Room-Texture

Resolution 128ˆ128 128ˆ128 128ˆ128 128ˆ128
Number of slots 8 5 5 5

Dataset Kitchen-Shiny Kitchen-Matte DTU MVS ScanNet

Resolution 128ˆ128 128ˆ128 400ˆ300 640ˆ480
Number of slots 5 5 8 8

All the images are resized to 128ˆ128 for synthetic data and 640ˆ480 for real-
world data. Image resolution and the number of slots K used on different datasets
are shown in Tab. A.2. To encourage SlotLifter to segment the background
properly, we use the locality constraint proposed by uORF [59]. Specifically, we
set a background bound and enforce every point outside the bound being mapped
to the empty slot or the first slot. The locality constraint is imposed for the
first 50K iterations, preventing SlotLifter from segmenting the background as
2 separate objects. Note that our SlotLifter does not require a background-
aware Slot-Attention like uORF since our slots are initialized by learnable queries,
enabling Slot-Attention to learn to individually segment the background and
foreground objects. On ScanNet and DTU MVS, we adopt the coarse-to-fine
sampling scheme on ScanNet following previous methods, sampling 64 points along
each ray for the coarse sampling and another 64 points for the fine sampling. We
found that the coarse-to-fine sampling scheme aids SlotLifter in rendering novel



Slot-guided Feature Lifting for Learning Object-centric Radiance Fields 3

Table A.3: Efficiency and performance comparisons on Room-Diverse. We
evaluate all the methods on an NVIDIA RTX 3090 GPU.

Model PSNRÒ LPIPSÓ NV-ARIÒ ARIÒ GPU MemoryÓ Training TimeÓ

uORF 25.96 0.1729 56.9 65.6 24 GB 6 days
BO-uORF 26.96 0.1515 62.5 72.6 24 GB 6 days

ours(N=256) 29.83 0.1345 76.1 88.7 3.5 GB 10 hours
ours(N=512) 29.84 0.1277 76.2 88.0 6 GB 19 hours
ours(N=1024) 29.80 0.1180 77.5 90.3 12 GB 30 hours

Table A.4: Ablations on the number of rays with different image sizes.
Increasing the number of rays sightly improves rendering and segmentation quality,
while reducing image size slightly decreases both rendering and segmentation quality.

Number of rays
ScanNet (640ˆ480) Room-Diverse (128ˆ128) Room-Diverse (64ˆ64)

PSNRÒ NV-FG-ARIÒ PSNRÒ LPIPSÓ NV-ARIÒ ARIÒ PSNRÒ LPIPSÓ NV-ARIÒ ARIÒ

256 27.27 19.8 29.83 0.1345 76.1 88.7 29.55 0.0792 69.2 82.4
512 27.92 32.3 29.84 0.1277 76.2 88.0 29.57 0.0731 69.9 83.2
1024 28.36 31.1 29.80 0.1180 77.5 90.3 29.57 0.0687 70.2 82.4

views with higher quality. The training configuration is summarized in Tab. A.1.
Additionally, we found the background occlusion regularization loss from [37,57]
is helpful on the Kitchen-Matte and Kitchen-Shiny datasets for preventing the
background slot segmenting foreground objects but it has little effect on the
rendering quality. We only use this loss on the Kitchen-Matte and Kitchen-Shiny
datasets because we didn’t find it helpful on other datasets.

A.2 Baselines

uORF and BO-uORF The experimental results of uORF [59] on CLEVR-567,
Room-Chair, and Room-Diverse are taken from their paper. We trained the
BO-uORF model on CLEVR-567, Room-Chair, Room-Diverse, and ScanNet
using the official implementation of uORF and BO-QSA. As (BO-)uORF only
accepts single source view input, we selected the closest view to the target view
as the source view for it. Unfortunately, due to design limitations, such as model
architecture, adversarial loss, perceptual loss, etc., we could not train the BO-
uORF model at the resolution of 640ˆ480. Therefore, we had to use a resolution
of 128ˆ128 following their original settings. We use 8 slots for uORF as same as
our method.

OSRT We trained OSRT [42] on CLEVR-567, Room-Chair, Room-Diverse, and
ScanNet using the implementation recommended by the authors on the project
website of OSRT. We observed that OSRT’s performance of scene decomposition
is highly sensitive to the batch size used during training, which is also mentioned

https://github.com/KovenYu/uORF
https://github.com/YuLiu-LY/BO-QSA
https://github.com/stelzner/osrt
https://osrt-paper.github.io/#code
https://osrt-paper.github.io/#code
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in the implementation. Due to the computational limitations, we trained the
OSRT for 250K iterations using a batch size of 64 and sampling 2048 rays for
each scene with 2 Nvidia A100 GPUs. To train OSRT on the ScanNet dataset,
we resized all images to 128ˆ128.

GNT We trained GNT [50] on ScanNet using their official implementation.
We trained GNT for 250K iterations with their config gnt_full.txt in their
repository, which uses a learning rate of 5 ˆ 10´4, samples 2048 rays for each
scene, and selects 10 nearby source views to render the target view.

B Additional Discussions

B.1 Potential Improvements

Although SlotLifter exhibits superior performance in novel-view synthesis
and scene decomposition compared to state-of-the-art 3D object-centric learning
methods, its scene decomposition performance still falls short under real-world
settings. This is particularly noteworthy considering the recent success of 2D
object-centric models on real-world images (see in Tab. A.5). We attribute this
undesired effect to the unconstrained point-slot mapping process. As elaborated
in Sec. 3.2, the slots are mapped to the 3D points which are later projected to the
target view image. With only reconstruction loss, the information in the target
image can be backpropagated to both slots and lifted point features. This adds
no direct guidance or constraints on slot learning and can easily make the learned
slots attend to features that best render the scene instead of decomposing it.

Table A.5: Quantitative segmentation
results on ScanNet. FG-ARI is evaluated
on the input view(s). “MV” indicates 3D
multi-view inputs.

Model Modality FG-ARIÒ NV-FG-ARIÒ PSNRÒ

Slot-Attention [36] 2D 31.1 - -
DINOSAUR [43] 2D 47.6 - -

OSRT [42] MV 29.8 29.7 13.34
SlotLifter MV 32.0 31.1 28.36

SlotLifter w/ Lfeat MV 36.1 35.7 25.38

To account for this issue we con-
sidered guiding slots to decompose
scenes with semantic priors in pre-
trained models. Inspired by recent
object-centric learning methods DI-
NOSAUR [43] and VideoSAUR [60]
that replace image reconstruction with
feature reconstruction, we propose to
improve the scene decomposition ca-
pability of SlotLifter by adding a feature reconstruction loss. Specifically, we
first extract DINOv2 [40] features Ĥ for the target view as ground truth. Similar
to the color prediction in Eq. (5) we add an MLP to predict a feature grid h
and render 2D features H . Next, we add the feature reconstruction loss over the
predicted target-view feature, i.e. Lfeat “ 1 ´ DpH, Ĥq, where D denotes the
cosine similarity. As shown in Tab. A.5, this feature reconstruction loss improves
the segmentation performance on ScanNet, but it harms the rendering quality
of novel view images, decreasing the PSNR to 25.38. This result reveals the key
conflict between the high-level semantic guidance and the low-level appearance
guidance which is commonly shared in object-centric models. Adding 3D geome-
try or temporal constraints (e.g ., shape and temporal consistency) that reveal

https://github.com/stelzner/osrt
https://github.com/VITA-Group/GNT
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Table A.6: Quantitative results of OSRT in synthetic scenes. We present the
best performance of our reimplemented OSRT. The performance of OSRT is hindered
by its requirements for large amounts of data and computational demands.

Model
CLEVR-567 Room-Chair Room-Diverse

NV-ARIÒ FG-ARIÒ PSNRÒ NV-ARIÒ FG-ARIÒ PSNRÒ NV-ARIÒ FG-ARIÒ PSNRÒ

OSRT: [42] 3.1 10.3 20.73 5.4 24.0 20.99 7.4 39.3 24.58
uORF [59] 83.8˘0.3 87.4˘0.8 29.28 74.3˘1.9 88.8˘2.7 29.60 56.9˘0.2 67.8˘1.7 25.96

SlotLifter 87.0˘2.8 91.3˘1.8 36.09 89.7˘0.5 91.9˘0.3 34.63 77.5˘0.7 84.3˘2.9 29.97

Training
Scenes

Test
Scenes

Input Input
View

Seen
Novel View

Unseen
Novel View Input Input

View
Seen

Novel View
Unseen

Novel View

Fig. A.1: Qualitative results of OSRT. OSRT tends to overfit training scenes and
training views, making it difficult to generalize to unseen scenes and unseen views.

objectness can potentially solve this problem and we leave it as an important
future work.

On the other hand, the superior performance on ScanNet and DTU implies
better scene encoding in SlotLifter, supporting potential conjectures that
these latent slots work similarly to latent feature grids with point features
interpolated over them for better novel-view synthesis. This echoes the success of
feature-grid-based methods (e.g ., Plenoxels [21]) for improving the performance
of NeRF.

B.2 Further Discussions about Previous Methods

(BO-)uORF As shown in Tab. 5 and Fig. 4, BO-uORF failed to render novel
views and decompose scenes in complex real-world scenes, achieving only a PSNR
of 12.72 and a NV-FG-ARI of 0.0. Moreover, to demonstrate that the failure of
BO-uORF is not due to lower resolution, we trained our SlotLifter with a
resolution of 128ˆ128 and achieved a PSNR of 29.31.

OSRT We present the quantitative results of OSRT in Tab. A.6 and visualize
qualitative results in Fig. A.1. The performance of OSRT is hindered by its
requirements for large amounts of data and computational demands, especially
on CLEVR-567 which only has 1000 training scenes. We observed that the OSRT
tended to overfit training scenes ( Fig. A.1 ), making it difficult to generalize
to unseen scenes. We attempted a larger batch size of 256 and trained OSRT
for more iterations (750K), but the overfitting issue persisted. We also visualize
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Fig. A.2: Qualitative results of OSRT from the implementation recommended
by the authors of OSRT. OSRT performs well on seen views (e.g ., 0˝, 120˝), but
has difficulty in unseen views (e.g ., 60˝, 180˝).

the results provided by this implementation in Fig. A.2, which demonstrates a
similar experimental phenomenon that OSRT performs well on seen views (e.g .,
0˝, 120˝), but has difficulty in unseen views (e.g ., 60˝, 180˝). Quantitatively,
on the CLEVR-567 dataset, OSRT achieved 47+ PSNR on training scenes, but
only 20.73 on test scenes. Similarly, on the ScanNet dataset, OSRT achieved 27+
PSNR on training scenes, but only 13.34 on test scenes. These results demonstrate
that OSRT may memorize all the training scenes with its powerful transformer
encoder-decoder, requiring a lot of data to overcome the overfitting problem. The
number of training scenes used in our paper might not be sufficient to train the
OSRT(1000 for CLEVR-567 and Room-Chair, 5000 for Room-Diverse, and 100
for ScanNet), leading to the failure case. We attribute this ineffectiveness to its
lack of inductive bias for 3D scenes, which is a main distinction between OSRT
and our SlotLifter.

C Limitations and Future Work

Inference efficiency While our SlotLifter has significantly improved training
efficiency compared to other 3D object-centric models, its inference efficiency is
not satisfactory compared with light field methods (e.g ., COLF and OSRT). The
primary reason for this issue is that NeRF representations require the sampling
of a large number of points with expensive computations, most of which are
wasted on irrelevant vacant points. Although light field methods, such as OSRT,
are very efficient for inference, they lack the use of 3D information and require
a lot of data and computation commands to overcome the overfitting problem.
Some recent works, such as those based on point clouds [56], surfels [22], and
Gaussian Splatting [31,63], have demonstrated high efficiency for inference and
good utilization of 3D information, which could be integrated into future work
to improve the inference efficiency.

Details of Complex Object As depicted in Fig. A.5 and Fig. A.6, the
SlotLifter encounters challenges in accurately rendering and segmenting chair
legs from different angles, particularly when dealing with real chairs in Room-
Texture. A primary issue contributing to this difficulty lies in ray sampling.
NeRF-based techniques typically employ ray sampling during the training pro-
cess to reduce computational load. For example, in our case, we sample 1024

https://github.com/stelzner/osrt
https://github.com/stelzner/osrt
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rays from an image with 128 ˆ 128 “ 16384 pixels. Consequently, the majority
of rays focus on the background and larger objects, leaving finer details like
chair legs with limited attention. While increasing the number of sampled rays
could address this issue, it would also escalate the computational demands. The
integration of Gaussian Splatting [31] has the potential to assist in balancing
computational requirements with rendering quality. Moreover, we have observed
that this problem exists in other approaches as well. Nevertheless, it appears to
be mitigated in uOCF [37] due to its training with the object prior, which could
potentially aid our SlotLifter in addressing this particular challenge.

D Additional Visualizations

We provide more qualitative results of our SlotLifter in the following pages.
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Input View 0° 60° 180°120° 300°240°

Fig.A.3: Novel view synthesis and unsupervised segmentation on CLEVR-567.
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Input View 0° 60° 180°120° 300°240°

Fig.A.4: Novel view synthesis and unsupervised segmentation on Room-Chair.
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Input View 0° 60° 180°120° 300°240°

Fig.A.5: Novel view synthesis and unsupervised segmentation on Room-Diverse.
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Input View 0° 60° 180°120° 300°240°

Fig.A.6: Novel view synthesis and unsupervised segmentation on Room-Texture.
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Fig.A.7: Novel view synthesis and unsupervised segmentation on Kitchen-Shiny.
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Fig.A.8: Novel view synthesis and unsupervised segmentation on Kitchen-Matte.
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GT Seg. Our Seg.GT Novel View Our Novel View

Fig.A.9: Novel view synthesis and unsupervised segmentation on ScanNet.
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Our SegmentationGT Novel View Our Novel View

Fig.A.10: Novel view synthesis and unsupervised segmentation on DTU MVS.
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