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Figure 1. An overview of BEACON3D, a novel benchmark for 3D grounding and question answering (QA) tasks. BEACON3D features
an object-centric evaluation framework, with Grounding-Chains (G-Chains) and Grounding-QA-Chains (GQA-Chains) for each object. The
evaluation adopts object-centric metrics to ensure robustness and utilizes chain-of-analysis for studies in task coherence. We also involve the
study of various knowledge types such as class, appearance (“App.”), spatial (“Spa.”), and geometry (“Geo.”).

Abstract

Existing 3D vision-language (3D-VL) benchmarks fall short
in evaluating 3D-VL models, creating a “mist” that obscures
rigorous insights into model capabilities and 3D-VL tasks.
This mist persists due to three key limitations. First, flawed
test data, like ambiguous referential text in the grounding
task, can yield incorrect and unreliable test results. Second,
oversimplified metrics such as simply averaging accuracy
per question answering (QA) pair, cannot reveal true model
capability due to their vulnerability to language variations.
Third, existing benchmarks isolate the grounding and QA
tasks, disregarding the underlying coherence that QA should
be based on solid grounding capabilities. To unveil the
“mist”, we propose BEACON3D, a benchmark for 3D-VL
grounding and QA tasks, delivering a perspective shift in the

*Equal contribution.

evaluation of 3D-VL understanding. BEACON3D features (i)
high-quality test data with precise and natural language, (ii)
object-centric evaluation with multiple tests per object to en-
sure robustness, and (iii) a novel chain-of-analysis paradigm
to address language robustness and model performance co-
herence across grounding and QA. Our evaluation of state-
of-the-art 3D-VL models on BEACON3D reveals that (i)
object-centric evaluation elicits true model performance and
particularly weak generalization in QA; (ii) grounding-QA
coherence remains fragile in current 3D-VL models, and
(iii) incorporating large language models (LLMs) to 3D-VL
models, though as a prevalent practice, hinders grounding
capabilities and has yet to elevate QA capabilities. We hope
BEACON3D and our comprehensive analysis could benefit
the 3D-VL community towards faithful developments.
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1. Introduction

The ability to understand 3D scenes is an essential facet
of human-level intelligence [9, 30, 57, 64, 97]. Recent
3D vision-language (3D-VL) models have achieved notable
progress in language-grounded 3D scene understanding
[7, 8, 22, 25, 27, 29, 35, 51, 98, 99], and various bench-
marks have been established for 3D-VL tasks like object
grounding [2, 5, 35, 78, 81, 91] and question answering (QA)
[4, 24, 50, 52]. Despite the improving performance on these
benchmarks, a critical question remains to be addressed:
How effective are these benchmarks for 3D-VL under-
standing; are the progress and results on these benchmarks
reliable enough to guide the development of 3D-VL models?
We raise considerable concerns on this question, observ-
ing several key limitations in existing 3D-VL benchmarks:

* First, we observe notable flaws in the test data, which may
undermine the reliability of evaluations. For example, ref-
erential text in the grounding task can be ambiguous or
unnatural, leading to ill-posed tests; ambiguous questions
in QA data may mislead to divergent answers; incomplete
answer labels can misrepresent model performance by pe-
nalizing correct predictions. Our human studies highlight
these flaws in ScanRefer [5] and ScanQA [4], as validated
by the limited human performance. Additionally, we show
that addressing the flaws in ScanRefer can lead to a more
accurate evaluation of model performance.

» Second, the evaluation metrics in current 3D-VL bench-
marks fall short in accurately capturing model capability.
Oversimplified metrics, such as averaging accuracy over
individual QA pairs, are vulnerable to model pitfalls like
visual ignorance (i.e., predictions determined solely by
texts) and weak language robustness (i.e., predictions sus-
ceptible to varied texts). We demonstrate their vulnerabil-
ity by showing that blind LLMs can achieve unexpectedly
high accuracy on SQA3D [50], and even minor language
rephrasing can significantly affect QA accuracy. This sug-
gests the need for more robust evaluation metrics through
language variations and multiple tests for each object.

* Third, current 3D-VL benchmarks isolate grounding and
QA tasks, exposing QA in the risk of shortcuts. To address
this gap, we design Grounding-QA-Chains (GQA-Chains)
to assess model performance coherence between ground-
ing and QA. These chains ensure that the contents of QA
are covered by corresponding grounding texts. Our study
on GQA-Chains reveals two types of broken coherence:
(i) model correctly grounds the object but fails in QA,
showing poor QA skills; and (ii) model fails in grounding
but succeeds in QA, suggesting shortcuts in QA. Specifi-
cally, on a state-of-the-art 3D-VL model PQ3D [99], we
observe that half of QA errors are associated with correct
grounding predictions, while one-quarter of correct an-
swers result from shortcuts. This implies the potentially
fragile grounding-QA coherence in 3D-VL models.

Motivated by our analyses, we construct BEACON3D, a
novel benchmark for 3D-VL grounding and QA tasks, pro-
viding a new perspective in 3D-VL evaluation. The bench-
mark is built on 30 meticulously selected high-quality scenes
from ScanNet [14], 3RScan [75], and MultiScan [55]. We
exhaustively annotate objects in each scene and introduce
object-level evaluation with three cases per object for both
grounding and QA. This yields more robust and reliable
object-centric metrics, reflecting the true model capabilities.
Additionally, we propose Grounding-Chains (G-Chains) for
the grounding task, spanning grounding texts from coarse
(e.g., “chair”) to fine-grained (e.g., “gray chair next to the cor-
ner table”) descriptions. To address the isolation of ground-
ing and QA tasks, we further construct GQA-Chains associ-
ated with G-Chains to assess model performance coherence
across grounding and QA tasks. BEACON3D comprises a
total of 837 objects, 2511 G-Chains and 2511 GQA-Chains,
with all annotations manually crafted for language clarity
and naturalness. We employ object-centric evaluation met-
rics that require accurate predictions across all three tests
per object for grounding and QA, helping to better manifest
model pitfalls. The G-Chains and GQA-Chains also enable a
novel chain-of-analysis evaluation paradigm in BEACON3D,
providing a holistic assessment of 3D-VL model capabilities.

We apply BEACON3D to evaluate state-of-the-art 3D-VL
models. Compared to conventional per-case averages, object-
centric metrics elicit a significant model performance drop
in both grounding and QA. This highlights that models are
prone to language variations and exhibit a limited object-
level understanding. Analyses on G-Chains show that mod-
els struggle when the granularity of grounding texts in-
creases. And analyses on GQA-Chains reveal a fragile
grounding-QA coherence in 3D-VL models, underscoring
the gap between grounding and QA skills, and the prevalence
of shortcuts in 3D QA. Furthermore, contrary to existing
practices [8, 25, 29, 65], our results show that incorporating
LLMs for 3D-VL models hinders grounding and has yet
to improve QA performance on BEACON3D, offering new
insights into the learning of grounding and QA tasks.

We summarize our contributions as follows:

1. We present detailed investigations into limitations of exist-
ing 3D-VL benchmarks and expose fragile performance
coherence across grounding and QA in 3D-VL models.

2. We propose BEACON3D, a benchmark for 3D grounding
and QA that shifts the evaluation paradigm to object-
centric evaluation with chain-of-analysis on grounding
and grounding-QA chains, providing a high-quality, faith-
ful, and holistic tool for evaluating 3D-VL models.

3. We present a comprehensive analysis of state-of-the-art
3D-VL models on BEACON3D, highlighting common
model pitfalls like grounding-QA incoherence and incom-
plete object understanding, along with the unexpected
hindrance of LLM for 3D-VL tasks.
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grounding data with the target object highlighted. Ambiguous text includes viewpoint-dependent expressions like “left” and “right”, or
lacks information to uniquely specify the target object. Unnatural descriptions are hard to understand by humans for being too tedious or
grammatically invalid. Incorrect annotation refers to the mismatch between text and target object. (2) The bottom row shows QA data
with ground truth (GT) shown in square brackets. Ambiguous question lacks context to clarify the queried object, potentially leading to
contradictory answers. Incomplete answers may forbid alternative correct answers.

2. Related Work

3D vision-language models. Fueled by the advancement
of vision-language models (VLMs) [21, 28, 38, 39, 60, 66,
88] and reconstruction techniques [10, 34, 45-47, 58, 59, 76,
77, 85], the capability of 3D scene understanding has been
greatly improved. Key contributions in this area include
3D perception techniques [1, 7, 31, 47, 62, 63, 69, 79, 93],
2D-3D feature integration [23, 33, 37, 61, 83, 99], and
3D-VL pretraining [18, 35, 78, 80, 95, 98]. On the other
hand, the rapid development of large vision-language mod-
els (LVLMs) [15, 40, 43] drives 3D-VL models to evolve
from task-specific architectures to generalist frameworks
[8, 13, 20, 25, 27, 29, 36, 82, 92, 96]. While these 3D
LVLMs demonstrate impressive capabilities, there is also a
pressing demand for advanced benchmarks to comprehen-
sively evaluate these models, and address underexplored
questions, e.g., generalizability and the effect of LLMs.

3D vision-language datasets and benchmarks. Early re-
search in 3D-VL learning has produced initial task-specific
benchmarks for grounding [2, 5, 91] and QA [4, 24, 50, 84],
akin to the early stage of 2D vision-language (2D-VL) bench-
marks [3, 32, 54, 56, 70, 86]. As recent LVLMs evolve to be
more powerful and intricate, 2D vision-language (VL) bench-
marks have advanced towards meticulously designed evalua-

tion or detailed analysis [0, 19, 41,43, 44, 68, 74, 87, 89, 90].
In contrast, recent 3D-VL works mainly focus on large-
scale learning [29, 35, 42, 48, 49, 78, 98] while adhering
to conventional evaluation criteria [2, 4, 5, 50]. On the other
hand, recent advance in the evaluation of 3D-VL models
[52, 53, 71-73, 94] provides suites for analyzing issues such
as hallucination and robustness [16, 36, 81]. Nonetheless,
prior works have not established an evaluation criterion with
reliable metrics and in-depth analysis of 3D grounding and
QA tasks, which is the exact goal of this paper.

3. An Investigation into 3D-VL Benchmarks
3.1. Flawed Test Data

When examining existing 3D-VL benchmarks, we identified
flaws in the test data as a significant issue for evaluating
model performance. We provide justifications from both
quantitative and qualitative aspects as follows:

Qualitative analysis. We analyze the test data quality from
prevalent 3D-VL benchmarks: ScanRefer [5] and Nr3D [2]
for grounding, and ScanQA [4] for 3D-QA. We identify
common data flaws, shown in Fig. 2. Key grounding issues
include: (i) ambiguous referential text, which lacks informa-
tion to uniquely identify the target object; and (ii) unnatural
descriptions, being excessively complex, that are difficult



Table 1. Human study on ScanRefer val set. We report clarity and
naturalness scores (1~5) of the referential text, as well as human and
model prediction accuracy. We use PQ3D [99] for model evaluation.

Table 2. Human study on ScanQA (val) and SQA3D (val and
test). Quality scores range from 1 to 5. Human accuracy is
evaluated using answer labels as the ground truth.

Data Source ‘ Clarity Naturalness Human Accuracy Model Accuracy

Data Source ‘ Question Quality ~ Answer Quality Human Accuracy

ScanRefer 3.70 423 69% 63% ScanQA 3.44 3.60 62%
Refined 4.59 4.34 100% 70% SQA3D 4.64 4.46 80%
Leal"ning Inference %: How many red chairs there in this room?
. Q1% Q Ay =4 9 =
)
§ e 8 More detailed question
b "..‘ J‘ ;]h»".'y/v 198 ) 9,; How many chairs are there in this room?
= o B B -y Q 4o 9 ,_;J
e 4 L "f*". ] l ‘- -
" ), // ‘ g Rephrased question
4 % (S

A: Brown =" A:Brown

}; Count the number of chairs in this room.

(i

Q2~Qo Az # Ay 8

Figure 3. Illustrative examples on visual ignorance. The model Figure 4. Illustrative examples on language robustness. Rephrased
predicts answers directly from questions, ignoring scene information and more detailed questions of the same concept can easily lead to

(e.g., chair color).

to identify the target object. For 3D-QA, we observe that
(i) ambiguous questions with no clear targeting object eas-
ily leads to contradictory answers, and (ii) questions with
incomplete answers can undermine evaluation reliability by
forbidding alternative valid answers predicted by the models.

Quantitative analysis. We provide quantitative measure-
ments of data flaws and their impacts. For grounding, we
sample a subset of 100 grounding texts from the ScanRefer
validation set and instruct human evaluators to re-predict
the target object based on the referential text and score the
clarity and naturalness of each text (scored from 1 to 5). As
shown in Tab. 1, a large portion (31%) of the test data leads to
incorrect human predictions. We test a recent state-of-the-art
3D-VL model, PQ3D [99], before and after manually refin-
ing these texts. We observe a significant model performance
improvement (7%) without model-side adjustments.

For QA, we also randomly sample 100 QA pairs from
ScanQA and SQA3D [50]. We instruct human evaluators
to re-answer the questions and rate the quality of the QA
text. As shown in Tab. 2, the low human prediction accuracy
(62% on ScanQA) highlights that the flaws in QA data pose a
tangible upper bound on model performance. These analyses
on existing grounding and QA benchmark underscore the
need for rigorous quality control in 3D-VL benchmarks.

3.2. Insufficient Evaluation Metrics

In this section, we show that simple metrics like average ac-

curacy over all test instances in existing 3D-VL benchmarks

are insufficient to reveal true model pitfalls including visual

ignorance and poor language robustness:

* Visual ignorance refers to the scenario where models
can perform tasks without the need for visual input, as
illustrated in Fig. 3. As an example, we show in Tab. 3

wrong model predictions.

Table 3. Blind LLM:s finetuned with LoRA on SQA3D. ' indi-
cates the performance of state-of-the-art 3D-VL model [96].

Blind LLM ‘ OPT-1.3B  Gemma2-2B  Vicuna-7B LLaMA3-3B  LLaVA-3Df
EM-1 | 439 48.8 494 50.0 55.6

that fine-tuning “blind” LLMs yields a comparable result
on SQA3D metrics compared to state-of-the-art 3D-VL
models. This indicates a deficiency in SQA3D’s metrics
for evaluating the visual capability of 3D-VL models.

* Language robustness refers to a model’s susceptibility
to language variations. For example, in QA (see Fig. 4),
models often struggle with rephrased or more detailed
questions about the same object concept (e.g., chairs).
We demonstrate this by rephrasing good questions sam-
pled in Sec. 3.2 and comparing PQ3D’s performance on
the rephrased sets versus the original sets. The results
in Fig. 5(b,c) show model sensitivity to language variations
do exist, especially on SQA3D where 16% of predictions
switch from correct to incorrect. However, such a problem
is overlooked with current 3D-VL benchmarks treating
these variations as separate instances during evaluation.

To prevent lingual shortcuts arising from visual ignorance,
we need careful data curation to avoid scene-irrelevant ques-
tions and introduce vision-oriented metrics to assess models’
visual capability. To better evaluate language robustness of
models, we need robust evaluation frameworks that incorpo-
rate language variations and multiple evaluation instances
per object. Thus, we argue that 3D-VL benchmarks must
evolve to better visualize these crucial dimensions of 3D-VL
model performance.

3.3. Grounding-QA Coherence

During our exploration, one critical question we identified,
yet has been overlooked by existing benchmarks, is: Why do
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2) incorrect grounding and correct QA, suggesting shortcuts in QA. (b) The effect of rephrasing ScanRefer texts on the performance
of PQ3D. (c) The effect of rephrasing SQA3D questions on the performance of PQ3D. (d) Results of PQ3D on GQA-Chains. We
observe over half of QA failures (24% out of 46%) stem from insufficient QA skills while nearly a quarter of correct QA predictions (14%

out of 54%) are achieved via shortcuts.

models fail in 3D-QA tasks, is it due to language complexity
or inadequate scene understanding capabilities? Believing
that accurate QA predictions should be grounded in strong
scene understanding, we propose a novel Grounding-QA-
Chain (GQA-Chain) that connects grounding and QA eval-
uations to provide detailed analyses of model performance
coherence across tasks. The core idea behind GQA-Chains
is to align questions with referential descriptions, ensuring
the queried content is directly present in the descriptive texts.
For example, in Fig. 5(a), the questions ask about the appear-
ance, geometry, and spatial relationships of the target object,
all of which are explicitly described in the referential texts.

With the expectation that strong 3D-VL should ex-
hibit consistent performance across grounding-QA pairs in
GQA-Chains, we generate GQA-Chains based on the re-
fined ScanRefer subset from Sec. 3.1 as a preliminary ex-
periment. We evaluate PQ3D on both datasets and visualize
the results in Fig. 5(d). We observe that over half of QA
failures stem from insufficient QA skills while nearly
a quarter of correct QA predictions are achieved via
shortcuts. These findings suggest the prevalence of bro-
ken grounding-QA coherence in 3D VL models, as well
as the demand for benchmarks to systematically evaluate
grounding-QA coherence.

4. The BEACON3D Benchmark

In this section, we introduce BEACON3D, a novel bench-
mark for 3D-VL grounding and QA tasks that addresses key
evaluation limitations identified in Sec. 3. We propose the
formats of Grounding-Chain (G-Chain) and Grounding-QA-
Chain (GQA-Chain) for organizing grounding and QA data,
along with an object-centric chain-of-analysis paradigm that
evaluates models’ performance coherence under language

variations and across tasks using object-centric metrics.

4.1. Benchmark Design

Data Design We consider two tasks in BEACON3D: (i) 3D
grounding, where models are required to predict the target
object’s 3D bounding box given the scene point cloud and
object referential texts; and (ii) 3D-QA, where models are
required answer a question about a target object based on the
scene point cloud. The data for these two tasks consists of:
¢ Grounding: we create G-Chain that consists of a series
of referential texts, ranging from coarse to fine. At its
finest level, the primary grounding text uniquely identifies
the target object. It is then rephrased into progressively
coarser texts at each subsequent level, referred to as sim-
plified grounding texts (see in Fig. 1). This relaxation
in object descriptions expands the set of correct objects
for simplified ground texts at each level, requiring model
predictions to fall within its set for correctness evaluation.
* Question Answering: As in Sec. 3.3, we construct

GQA-Chains by designing QA pairs based on the pri-
mary grounding texts in G-Chains. Each answer in a
GQA-Chain question is explicitly present in the corre-
sponding primary grounding text. To provide a holistic
evaluation, similar to other benchmarks, and accommodate
questions that require commonsense knowledge, we also
curate a set of questions with queried content not explicitly
found in the primary grounding texts. We tag these ques-
tions with an “extra knowledge” flag and exclude them
from the coherence analysis.

In addition, we tag each grounding and QA data with
its required knowledge types: class (semantic category),
appearance (color, material, texture, efc.), geometry
(shape, size, etc.), and spatial-relation. An extra
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knowledge type exist is added to QA for the questions
about whether something exists. Each QA data is assigned a
single knowledge type according to its queried content.

Data Collection We begin data collection by selecting
high-quality scenes from the held-out sets of ScanNet [14],
3RScan [75], and MultiScan [55] following two principles:
(1) the layout should be reasonable, neither overly cluttered
nor too simple, with clear object mesh reconstructions; and
(2) objects should be well-placed in the scene with balanced
distribution over categories. This results in 30 high-quality
scenes in diverse styles from the three datasets. Next, we
identify potential target objects by excluding: (i) background
objects like walls and floors, (ii) objects that are difficult to
distinguish via text (e.g., multiple chairs around a table), and
(iii) objects with comparatively low-quality reconstructions,
resulting in 837 unique target object instances. We then
build an annotation tool following [50] (see details in the
Appendix) for human annotators to annotate three G-Chains
and GQA-Chains for each object instance, totaling 2511
G-Chains and 2511 GQA-Chains. To address prior data
flaws, we establish detailed annotation guidelines, ensuring
precise and natural language, the indispensability of visual
modality in QA, and also balanced answer distributions.
Each annotation is cross-validated by two human reviewers.

Metrics In addition to the conventional per-case average
metrics, we adopt an object-centric evaluation scheme, re-
quiring models to accurately predict over all three grounding
or QA test cases per object. Our task-specific metrics are
computed as follows:

* Grounding: For each grounding text, the model is con-
sidered correct if the predicted object is included within
the candidate object set. For the object-centric metrics,
we first derive per-object results according to whether all
three predictions on the primary grounding texts are
correct, and then average the results over all objects. We
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also report per-case metrics by averaging the results over
all primary and simplified grounding texts.

¢ Question Answering: We first evaluate each QA pair
using GPT-Score [52], yielding a score M between 1 to
5 from GPT-4 [60]. The corresponding per-case accuracy
is then calculated as % following [52]. We derive a
binary per-object accuracy if M > 4 for all three QA
pairs. We report object-centric metrics by averaging per-
object accuracies, as well as per-case average accuracy
over all individual QA pairs.

4.2. Data Quality Check and Statistics

To assess the quality of the data collected in BEACON3D,
we have a separate group of human annotators evaluate it
based on clarity, naturalness, and human accuracy, following
metrics used in Sec. 3.1. For a fair comparison, we sample
the same quantity of data from the same scenes. As shown
in Fig. 6 and 7, BEACON3D significantly outperforms exist-
ing 3D grounding and QA benchmarks in terms of language
clarity, naturalness, and especially human accuracy metric
where nearly ~95% of the data labeled as correct upon re-
examination. We also visualize the statistics of BEACON3D
in Fig. 8, including object counts by domains, knowledge
types, data counts by knowledge types, and the proportion
of QA pairs requiring extra knowledge.

5. Experiments

Our experiments aim to address the following questions:

* How does the object-centric evaluation scheme differ from
conventional case-centric metrics in revealing model per-
formance? (Sec. 5.1)

* How do models perform when handling language varia-
tions in the G-Chains? (Sec. 5.2)

* Do models show performance coherence between ground-
ing and QA on GQA-Chains? (Sec. 5.2)

* Do LLMs affect the model performance? (Sec. 5.3)



Table 4. Evaluation results of grounding on BEACON3D. The Table 5. Evaluation results of QA on BEACON3D. Object-centric met-
“Obj.” column reports object-centric metrics. The columns of rics (“Obj.”) are drastically lower than case-centric metrics. t indicates

knowledge types report per-case averages over each type.

text input (i.e., object locations and attributes) instead of 3D point cloud.

Knowledge type Overall Knowledge type Overall

Class App. Geo. Spa. Case Obj. Class App. Geo. Spa. Exi. Case Obj.
w/o LLM w/o LLM
ViL3DRel [7] 61.8 669 465 595 61.8 398 3D-VisTA [98] 205 335 521 338 365 353 8.1
3D-VisTA [98] 71.0 646 563 689 710 509 PQ3D [99] 364 280 27.8 119 455 278 35
PQ3D [99] 76.1 712 66.0 745 76.1 57.2 SceneVerse [35] 35.6 41.7 489 419 357 403 6.6
SceneVerse [35] 734 649 646 719 735 521 LLM-based
LLM-based GPT-4o' [60] 333 499 549 521 738 571 20.2
LEO-multi 143 109 153 151 143 28 LEO-multi 258 377 528 462 374 411 35
LEO-curricular ~ 22.0 222 20.8 154 220 38 LEO-curricular 174 41.0 532 487 397 432 178
PQ3D-LLM 703 662 535 683 702 474 PQ3D-LLM 28.0 30.8 352 252 262 279 23

Chat-Scene [27] 62.7 573 563 57.8 62.7 443

Chat-Scene [27] 364 398 56.7 476 488 458 7.8

To explore these questions, We select a variety of state-of-
the-art 3D-VL models as baselines, categorizing them based
on their use of LLM. We make the necessary adjustments to
ensure that most baselines can handle both grounding and
QA tasks with the same set of model weights (see imple-
mentation details in Appendix). Specifically, we consider the
following baseline categories in our experiments:

e Without LLM. This category includes four baselines:
ViL3DRel [7], 3D-VisTA [98], PQ3D [99], and SceneV-
erse [35]. VIL3DRel is selected as a grounding specialist
and evaluated using its original checkpoint. For 3D-VisTA,
we multi-task fine-tune the model to make it a generalist
capable of handling both grounding and QA tasks. For
PQ3D, we directly use its pre-trained checkpoint as it is
already a generalist model. For SceneVerse, we freeze the
backbone pre-trained for grounding and add an additional
head for fine-tuning it on the QA task.

e LLM-based. This category includes five models: GPT-40
[60], LEO-multi, LEO-curricular, PQ3D-LLM, and Chat-
Scene [27]. GPT-40 is prompted with object lists with
locations and attributes for question answering. The object
attributes are sourced from MSQA [42], which were gen-
erated using GPT-4V. LEO-multi and LEO-curricular are
implemented by extending LEO [29] to grounding through
contrastive learning between object tokens and language
embeddings. LEO-multi is trained with both tasks jointly
while LEO-curricular is trained first on grounding and then
on QA with the backbone frozen. PQ3D-LLM is adapted
from PQ3D by replacing T5-Small [67] with Vicuna-7B
[12]. Chat-Scene is evaluated directly with its checkpoint.

5.1. Object-centric vs. Conventional Metrics

As shown in Tabs. 4 and 5, we observe a significant perfor-
mance drop of all 3D-VL models by simply switching from
per-case metrics to object-centric metrics in both grounding
and QA. In 3D grounding, we observe an average perfor-
mance drop by 20%, with LLM-based methods experiencing

a more pronounced decline. For 3D-QA, model performance
nearly drops to zero for all models after the metric switch,
except for the 2D baseline GPT-40. These findings highlight
that existing 3D-VL models lack a comprehensive under-
standing of objects and are prone to variations in language
descriptions and questions. The results underscore the impor-
tance of the object-centric evaluation scheme in pinpointing
these limitations of 3D-VL models. We provide additional
analyses in Appendix, such as discussions on outliers and the
effect of LLMs.

5.2. Chain-of-analysis for Coherence Evaluation

Grounding Chains. We aggregate the evaluation results
along G-Chains and categorize them into four types based
on the grounding results on coarse (simplified grounding
texts) and fine-grained texts (primary grounding texts). We
leave out LEO variants in our chain analysis considering
their weakness in grounding. We show the chained accuracy
statistics in Fig. 10. We demonstrate that models struggle
with the increased granularity in the G-Chain, where more
failures in fine-grained primary grounding texts occur than
in coarse simplified grounding texts. This indicates the dif-
ficulty of grounding primary grounding texts despite more
detailed contexts, suggesting that understanding complex
texts and maintaining model performance coherence across
text granularities is still a challenge for 3D-VL models.

Grounding-QA Chains. We aggregate the results across
GQA-Chains to study the gap between grounding and QA.
As shown in Fig. 9, we categorize the results into four types
based on the results of grounding and QA. We observe a
large proportion of broken coherence between tasks, echoing
Sec. 3.3. In particular, we design two metrics for evaluat-
ing the grounding-QA coherence: R; for the proportion of
GQA-Chains where grounding is correct and QA is incor-
rect, indicating insufficient QA skills; Ry for the proportion
of GQA-Chains where grounding is incorrect but QA is cor-
rect, suggesting shortcuts. We find both R, and Ry are close
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Figure 10. Chain-of-analysis for Grounding-Chains.
to 50%, revealing a substantial gap between the skills of
grounding and QA, as well as the prevalence of shortcuts in
QA. This advocates deeper explorations in enhancing QA

skills and mitigating shortcuts for 3D-VL models.

5.3. Effect of LLMs

LLMs hinder grounding. Tab. 4 and Fig. 10 show that
LLM-based models perform worse than those without LLM.
This includes (1) models that explicitly use LLM for ground-
ing, such as Chat-Scene, which underperforms compared
to non-LLM models like PQ3D and SceneVerse, despite
excelling on existing benchmarks [5, 91]; and (2) models
indirectly influenced by LLM, such as PQ3D-LLM, which
performs worse than PQ3D, suggesting that integrating LLM
parameters may bias the learning of grounding. These find-
ings indicate that LLM-based models face a heightened risk
of overfitting in grounding tasks.

LLMs do not fundamentally enhance QA. While LLM-
based models achieve higher per-case accuracy, this is ex-
pected given their inherent language modeling capability.
However, they have not shown a fundamentally better ca-
pability in 3D QA, as evidenced by their limited accuracy
in object-centric metrics (Sec. 5.1) and poor grounding-QA
coherence (Sec. 5.2). This suggests that the primary bot-
tleneck in 3D QA lies in 3D perception and VL alignment
rather than language modeling, where LLMs excel. More-
over, prior works [35, 99] show that simple QA heads (e.g.,
T5-Small [67] and MCAN [88]) can already achieve com-
petitive performance, indicating that 3D QA requires only

basic language modeling. Therefore, improving 3D QA may
depend more on advancing 3D vision foundation models
than on leveraging LLMs.

5.4. Additional Insights

Task. Results in Tab. 4 and Fig. 10 highlight the strong
grounding capabilities of PQ3D and SceneVerse, suggest-
ing that scaling up 3D-VL data is a promising strategy for
grounded 3D scene understanding. This supports training 3D
vision foundation models without integrating LLMs, which
proves redundant and even detrimental. On the other hand,
3D QA remains highly challenging due to severe overfitting
and shortcut learning in current 3D-VL models. A practical
solution is to start with a pre-trained backbone with strong
grounding capability and then perform lightweight finetun-
ing. This is supported by (1) SceneVerse (finetuning QA
head on top of grounding pretraining) shows best QA perfor-
mances among non-LLM models, and (2) LEO-curricular
(grounding-then-QA) outperforms LEO-multi (multi-task).

Knowledge types. We observe that geometry (Geo.) is the
most challenging aspect in grounding task, probably because
geometric features are rarely referenced in training data.
In contrast, geometry-related questions in QA involve less
diverse answers, potentially reducing the challenge. Con-
versely, the diverse answers in class and appearance (App.)
increase the task difficulty and lead to lower accuracy.

6. Conclusion

We propose BEACON3D, a novel benchmark for 3D ground-
ing and QA tasks, delivering an evaluation paradigm shift to
object-centric evaluation and analysis across grounding-QA
chains. BEACON3D is driven by a detailed investigation
into the limitations of existing 3D-VL benchmarks, address-
ing flawed test data, vulnerable evaluation metrics, and the
isolation of grounding and QA tasks. Our evaluation of
state-of-the-art 3D-VL models highlights model pitfalls like
insufficient object-level understanding, weak grounding-QA
coherence, and limited effect of LLM on 3D-VL tasks.
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A. Annotation Tool

We set up an interactive annotation tool for data collection
based on SQA3D [50]. We present a visualization of the
user interface (UI) in Fig. A.1, including a 3D scene viewer
(left), an annotation editor (middle), and object information
(right). There are three G-Chains and three GQA-Chains to
be annotated in the annotation editor for each target object.

Two panels on the right exhibit details of each annotation:

- For the grounding task, the human annotator is supposed
to fill the referential text with precise and natural language,
and then select the involved knowledge types and a list of
objects that match the referential text.

- For the QA task, the human annotator first generates a
QA pair based on the “grounding text”, which lists three
primary grounding texts from the G-Chains. Then, the
annotator labels the knowledge type and the flag of ex-
tra knowledge, e.g., “no” if the answer is covered by the
“grounding text”.

B. Baselines

ViL3DRel [7]. This is a 3D-VL specialist model for
grounding, trained in a single-task scheme. We use the
official checkpoint trained on ScanRefer [5].

3D-VisTA [98]. While 3D-VisTA adopts task-specific fine-
tuning for downstream tasks by default, we perform multi-
task training by aggregating the datasets it uses. The datasets
for grounding include ScanRefer, Nr3D [2], Sr3D [2], and
Multi3DRefer [91]. The datasets for QA include ScanQA
[4] and SQA3D [50].

PQ3D [99]. PQ3D is a 3D-VL generalist model that sup-
ports both grounding and QA tasks. We directly use the
checkpoint after pretraining and multi-task training. The
training datasets include Scan2Cap [11] in addition to the
datasets for 3D-VisTA.

SceneVerse [35]. SceneVerse is a 3D-VL model pretrained
on large-scale grounding datasets. To make it a general-
ist model for grounding and QA, we finetune a QA head
while freezing the pretrained backbone weights to preserve
its grounding ability. The datasets for fine-tuning include
ScanQA and SQA3D.

GPT-40 [60]. As a state-of-the-art LLM, GPT-4o is se-
lected as a specialist model for QA to probe the upper bound
of LLMs. We adopted the evaluation pipeline outlined in
[42] to assess GPT-40’s performance. In our evaluation, we
prompt GPT-40 to answer the questions based on a collection
of objects, which comprises the category, location, size, and
attributes of each object. The object attributes are extracted
with GPT-4V [60].

LEO-multi. To address the lack of grounding capability
in LEO [29], we design a grounding loss alongside the orig-
inal autoregressive language modeling loss. The ground-
ing loss resembles contrastive learning (CLIP [66]) on the
alignment between object tokens (the input to LLM) and
text embeddings. With the multi-task objective, we train
LEO-multi by combining grounding (ScanRefer and Nr3D)
with instruction-tuning tasks (ScanQA, SQA3D, 3RScan-QA
[29], 3RScan-Plan [29], and 3RScan-Dialog [29]).

LEO-curricular. Similar to LEO-multi, LEO-curricular
incorporates the contrastive grounding loss but learns ground-
ing and QA in a curricular strategy. We first train the 3D
encoder of LEO-curricular with grounding loss on ScanRe-
fer and Nr3D. We then freeze the 3D encoder and finetune
the LLM with LoRA [26] on instruction-tuning datasets.

PQ3D-LLM. This is a model variant based on PQ3D, sub-
stituting the original T5-Small [67] with Vicuna-7B [12],
which is finetuned with LoRA. The training setting is identi-
cal to PQ3D.

Chat-Scene [27]. Chat-Scene is designed to be a 3D-VL
generalist model, using object identifiers and LLM to per-
form grounding. The training datasets include ScanRefer,
Multi3DRefer, Scan2Cap, ScanQA, and SQA3D. We di-
rectly use its released checkpoint for evaluation.

C. Additional Analyses
C.1. Outliers and Prospective Questions

We observe several outliers in our evaluation results. Below,
we address these outliers and answer prospective questions:

Poor grounding for LEO-multi and LEO-curricular. The
grounding performance of these two models falls signifi-
cantly below that of others. We attribute this to our imple-
mentation of the grounding task learning, which employs
contrastive learning between object tokens and text embed-
dings of pretrained LLM (e.g., Vicuna). We receive two
lessons from this: (1) contrastive learning demands large-
scale data while the scarce 3D-VL data proves insufficient;
and (2) unlike CLIP, the text embeddings of pretrained LLM
may not be suitable for contrastive learning.

Poor QA for PQ3D and PO3D-LLM. Despite the strong
performance in grounding for these two models, their perfor-
mance in QA is notably weak. We attribute this to the choice
of language encoder. Compared to 3D-VisTA, PQ3D adopts
a similar overall architecture but differs in language encoder:
3D-VisTA uses BERT [17], whereas PQ3D uses CLIP. The
reasonable QA performance of 3D-VisTA indicates that the
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Figure A.1. Overview of our annotation tool. The interface includes a 3D viewer (left), an annotation editor (middle), and object
information (right). Two panels on the right exhibit details of each annotation for the grounding and QA task, respectively.

CLIP language encoder is suboptimal for QA task, despite
being adequate for grounding. This further underscores the
linguistic gap between grounding and QA tasks: ground-
ing texts encompass descriptive language while questions
involve diverse querying patterns. It reveals the limitations
of the CLIP language encoder in addressing this disparity.

Why is PQ3D-LLM worse than PQ3D in grounding?
While the LLM incorporated by PQ3D-LLM is only used for
QA, it introduces a significant number of extra parameters
for optimization, which may hinder the learning of ground-
ing during multi-task learning and consequently weaken the
grounding performance.

Why is PO3D-LLM not better than PQ3D in QA? In
PQ3D, the input to the QA head (e.g., LLM) only comprises
object tokens, which can be regarded as foreign language for
LLM. The challenge of utilizing these tokens for QA cannot
be alleviated by incorporating LLM, despite its strength in
language processing. Additionally, incorporating LLM for
QA is prone to overfitting given the scarcity of 3D QA data.

Strong performance of GPT-40 in QA. We observe that
GPT-40 significantly outperforms 3D-VL models in QA,
especially in questions related to appearance (App.) and
existence (Exi.). This showcases the upper bound of using
explicit textual information (e.g., object lists with attributes),
which bypasses 3D perception. The considerable gap be-
tween GPT-40 and 3D-VL models further suggests that 3D
perception remains a key bottleneck in 3D-VL models.

C.2. Discussion on the Effect of LLM

LLM hinders grounding. This conclusion is drawn from

the consideration of two categories of models:

- LLM directly used for grounding. Models that perform
grounding based on LLM (e.g., Chat-Scene) exhibit less
robust performance compared to models without LLM.
Specifically, despite the close performances on ScanRefer,
Chat-Scene lags behind PQ3D and SceneVerse on BEA-
CON3D, which implies the potential risk of overfitting for
LLM-based grounding. However, LLM may be beneficial
in more complex grounding tasks that require high-level
reasoning or planning, e.g., sequential grounding [92].
This suggests that the effect of LLM-based grounding
varies according to task complexity.

- LLM not directly used for grounding. In models that do
not rely on LLM for grounding (e.g., PQ3D-LLM), we
observe a weaker performance in grounding after incor-
porating LLM. This shows the negative effect of LLM’s
parameters on the learning of grounding during multi-task
learning. A practical solution is to decompose multi-task
learning into curricular learning, which disregards LLM’s
parameters during the learning of grounding.

LLM does not truly improve QA. We elaborate on this

conclusion from three aspects: clarification on how we draw

the conclusion, explanation on why per-case metrics do not
matter, and analysis on why LLM may not help 3D QA.

- How we draw the conclusion. The evidence mainly comes
from two observations: (1) the results of LLM-based mod-
els are comparable to those without LLM under object-
centric metrics; and (2) fragile grounding-QA coherence.



Table A.1. Evaluation results of grounding on BEACON3D
(3RScan). The settings and metrics follow the main paper. **
denotes models that have never been trained in 3RScan. * denotes
models that have been trained in 3RScan but not on grounding. *
denotes only point feature is available.

Knowledge type Overall
Class App. Geo. Spa. Case Obj.

w/o LLM
ViL3DRel** [7] 415 449 374 373 415 184
3D-VisTA** [98] 45.6 383 374 409 456 21.7

PQ3D**¥ [99] 383 28.0 364 353 383 136
SceneVerse [35] 618 514 533 573 618 375
LLM-based

LEO-multi* 10.1 9.9 9.7 88 10.1 04

LEO-curricular* 153 177 118 93 153 1.1
PQ3D-LLM**# 303 276 246 255 303 85

- Why per-case metrics do not matter. While LLM-based
models show slightly better results in per-case metrics,
these metrics do not reliably indicate true 3D QA capa-
bility. As demonstrated in the main paper, per-case met-
rics are not robust enough due to their vulnerability to
shortcuts. Moreover, the advantage of LLM-based models
in per-case metrics is marginal, which is intuitive given
LLM’s strength in general QA. We believe the marginal
gap in per-case metrics cannot evidence a gap in the true
capability of 3D QA.

- Why LLM may not help 3D QA. We conjecture the bot-
tleneck in 3D QA lies in the alignment between 3D fea-
tures and QA modules, rather than language generation,
where the primary strength of LLM resides. Prior works
[35, 98, 99] have shown that simple QA heads (e.g., T5-
Small or MCAN [88]) perform well in 3D QA, as the task
demands only a basic level of language generation. This
explains the minimal contribution of LLM to 3D QA.

Harnessing LLM for 3D-VL tasks. We first identify a
critical problem in current 3D LVLMSs and then propose an
effective solution to harness LLM for 3D-VL tasks.

- Problem. Our investigation in the main paper reveals
that overfitting to text is a critical problem in current 3D
LVLMs. This implies a significant imbalance between 3D
encoder and LLM, that is, LLM often overshadows 3D en-
coder during training. This issue is less pronounced in 2D
LVLMs owing to the robust 2D features learned through
extensive pretraining, which is infeasible for 3D encoders.

- Solution. We propose curricular learning, progressing
from grounding to QA, as an effective solution to mitigate
this issue by shielding 3D features from LLM interfer-
ence. The effectiveness is evidenced by the advantages of
SceneVerse and LEO-curricular.

Table A.2. Evaluation results of QA on BEACON3D (3RScan). '
indicates text input (i.e., object locations and attributes) instead of 3D
point cloud. ** denotes models that have never trained in 3RScan. *
denotes models that have been trained in 3RScan but not on QA.
denotes only point feature is available.

i

Knowledge type Overall

Class App. Geo. Spa. Exi. Case Obj.
w/o LLM
3D-VisTA** [98] 152 241 282 253 289 257 33
PQ3D**¥ [99] 6.5 196 13.6 166 52.6 257 0.7
SceneVerse* [35] 28.3 323 346 389 446 374 04
LLM-based
GPT-4o' [60] 348 382 400 454 60.7 46.1 11.0
LEO-multi 370 350 51.8 485 465 44.1 1.8

LEO-curricular 196 41.8 482 485 507 456 74
PQ3D-LLM** 130 214 173 214 332 234 18

C.3. Limitations and Future Work

First, our benchmark prioritizes focused and systematic anal-
ysis, which involves trade-offs in task scope and complexity.
Our object-centric evaluation excludes more advanced tasks,
such as multi-object grounding and complex reasoning. Ex-
tending this evaluation framework to include more complex
tasks will be a key direction for future work. Second, our
baselines may not cover the wide range of existing 3D-VL
models. We will evaluate and analyze more models in the
future. Third, we consider the performance of the grounding
task as a proxy for the grounding implicitly performed in the
QA task. This may be unfair to models whose grounding
performance is locked due to issues like improper imple-
mentation (e.g., LEO-multi and LEO-curricular). Nonethe-
less, we believe our approach remains practical for assessing
grounding-QA coherence in most 3D-VL generalist models.

D. Domain Transfer

We follow the setting outlined in the main paper to evalu-
ate the baselines in two novel domains: 3RScan [75] and
MultiScan [55]. This evaluation is referred to as domain
transfer since most baselines are only trained on ScanNet
[14]. Notably, as Chat-Scene only provides model features
for ScanNet, its evaluation on 3RScan and MultiScan is
not feasible. We distinguish between two types of domain
transfer:

- **: the model has never been trained in the target domain.
- *: the model has been trained in the target domain but on

tasks other than the specific one.

Results. We present the domain transfer results for 3RScan
in Tabs. A.1 and A.2, and MultiScan in Tabs. A.3 and A 4.
The overall trends are consistent with those reported in the
main paper for ScanNet. For example, while models without



Table A.3. Evaluation results of grounding on BEACON3D Table A.4. Evaluation results of QA on BEACON3D (MultiScan). '
(MultiScan). The settings and metrics follow the main paper. ** indicates text input (i.e., object locations and attributes) instead of 3D
denotes models that have never been trained in MultiScan. Only point cloud. ** denotes models that have never been trained in MultiScan.

SceneVerse has been trained in MultiScan. * denotes models that have been trained in MultiScan but not on QA.
Knowledge type Overall Knowledge type Overall
Class App. Geo. Spa. Case Obj. Class App. Geo. Spa. Exi. Case Obj.
w/o LLM w/o LLM
ViL3DRel** [7] 332 344 250 320 332 132 3D-VisTA** [98] 6.5 226 167 132 28.8 19.1 0
3D-VisTA** [98] 40.8 30.5 28.1 38.0 408 189 PQ3D** [99] 21.0 168 167 9.6 39.0 208 0.6
PQ3D** [99] 563 539 375 528 563 340 SceneVerse* [35] 162 32,1 125 265 38.1 289 3.1
SceneVerse [35] 595 546 531 566 59.5 359 LLM-based
LLM-based GPT-4o' [60] 290 41.6 333 257 593 394 7.6
LEO-multi** 9.0 9.1 9.4 9.0 9.0 1.3 LEO-multi** 129 241 417 243 322 256 25
LEO-curricular™  11.7 11.0 6.3 9.0 117 0 LEO-curricular** 8.1 270 500 28.7 415 298 38
PQ3D-LLM** 51.0 46.8 375 490 510 258 PQ3D-LLM** 6.5 219 83 11.0 254 170 0.6
LLM (e.g., SceneVerse) excel in grounding, LL.M-based tion by GPT-4V. This reveals that, despite their strengths
models (e.g., LEO-curricular) perform better under per-case in 3D QA, LLMs and 2D LVLM are constrained by the
metrics but struggle with object-centric metrics in QA. In availability of high-quality multi-view images.
particular, we report several specific findings regarding the
domain transfer results: E. Illustration of Data and Evaluation

- Challenge of domain transfer. All models exhibit no-
table performance declines, emphasizing the challenge of
domain transfer (ScanNet — 3RScan; MultiScan). Scen-
eVerse surpasses PQ3D owing to its comprehensive pre-
training across diverse scene domains. Moreover, training
on 3RScan-QA improves QA performance on 3RScan
(LEO-multi and LEO-curricular). These findings highlight
the inevitable domain gap and the benefits of cross-domain
pretraining.

- Limitations of feature-dependent models. PQ3D and
PQ3D-LLM experience considerable performance drops
on 3RScan due to a lack of image and voxel features.
While this issue results in only a marginal drop on Scan-
Net, as reported in the original paper [99], the consider-
able drop on 3RScan indicates the heightened challenges
of transferring to novel domains for feature-dependent
models such as PQ3D and Chat-Scene.

- More challenging 3D perception in MultiScan. Perfor-
mance on MultiScan is consistently lower than on 3RScan,
reflecting the increased difficulty of 3D perception in the
domain of MultiScan. SceneVerse, despite using a simple
QA head [88], outperforms LEO-multi and matches LEO-
curricular. This suggests that the bottleneck in QA lies
in 3D perception, suppressing the contribution of LLM.
It further underscores the need for more powerful 3D en-
coders to address this bottleneck.

- Performance degradation of GPT-40. GPT-40 exhibits
noticeably lower performance on 3RScan and MultiScan
compared to ScanNet, with the results on 3RScan ap-
proached by LEO-curricular. We attribute this degradation
to incomplete object attributes stemming from insufficient
multi-view images, which limits the object attribute extrac-

We present a video demo to illustrate the process of data
collection and evaluation (see attachment). Here we show
the static overview in Fig. A.2 and A 3.
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