

About me

buzz-beater.github.io

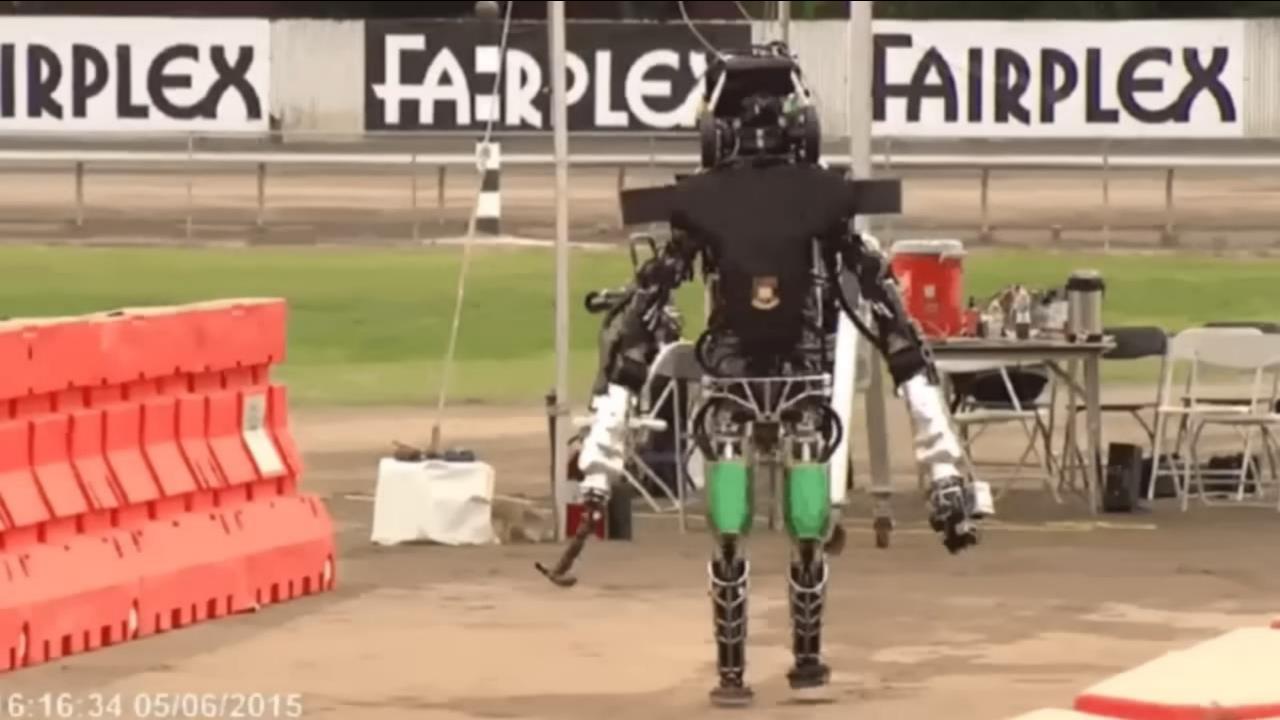
Peking University B.S. in CS 2014-2018 UCLA Ph.D. in CS 2018-2022 BIGAI Research Scientist 2022-Present

Embodied Al

The embodiment hypothesis is the idea that <u>intelligence emerges in the interaction</u> of an agent with an environment and as a result of sensorimotor activity

Smith & Gasser, The Development of Embodied Cognition: Six Lessons from Babies, 2005

Boston Dynamics, Atlas | Partners in Parkour, 2022 https://www.youtube.com/watch?v=tF4DML7FlWk Damen et al., Scaling Egocentric Vision: The Epic-Kitchens Dataset, 2018

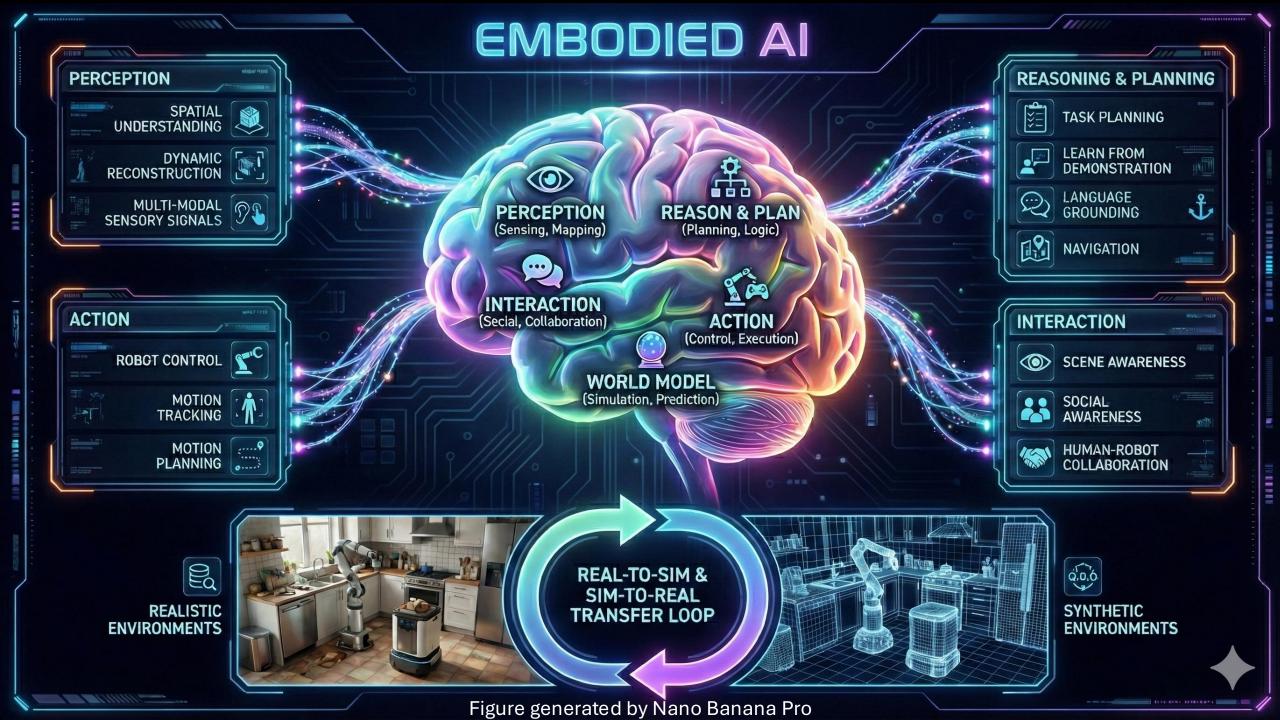


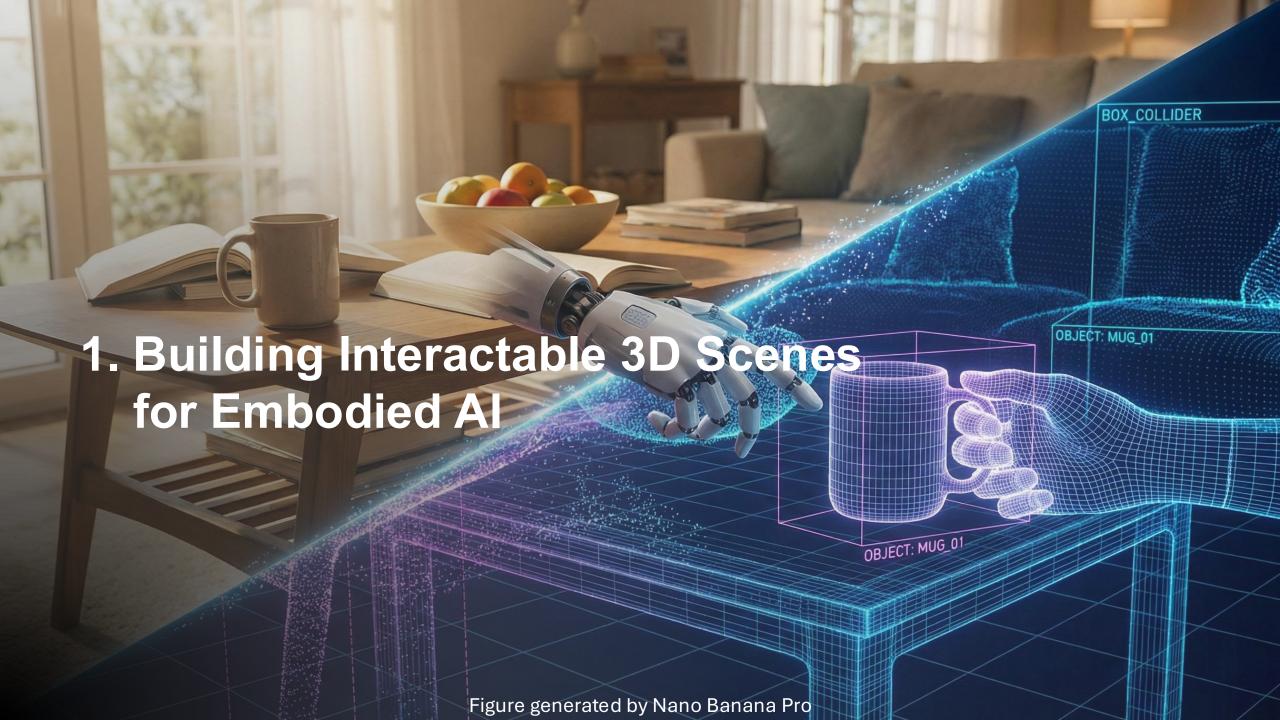
Moravec's Paradox

It's comparatively <u>easy</u> to make computers exhibit adult level performance on <u>intelligence tests or playing checkers</u>, and <u>difficult or impossible</u> to give them skills of a <u>one-year-old</u> when it comes to <u>perception and mobility</u>.

Hans Moravec, Mind Children, Harvard University Press 1988







Collecting Data and Training Robot in the Real World is Expensive



Damage the environment and objects

Low-cost hardware emerging but still low efficiency

Goal of Environment Creation

- High-quality appearance understanding for grounding and reasoning
- Fine-grained geometry understanding for simulation and physics
- Solid dynamics understanding for interaction and planning

eractable Replicas Dynamic Reconstruction ArtGS (ICLR'25) an Splatting

Digital Cousin Creation

MetaScenes (CVPR'25)

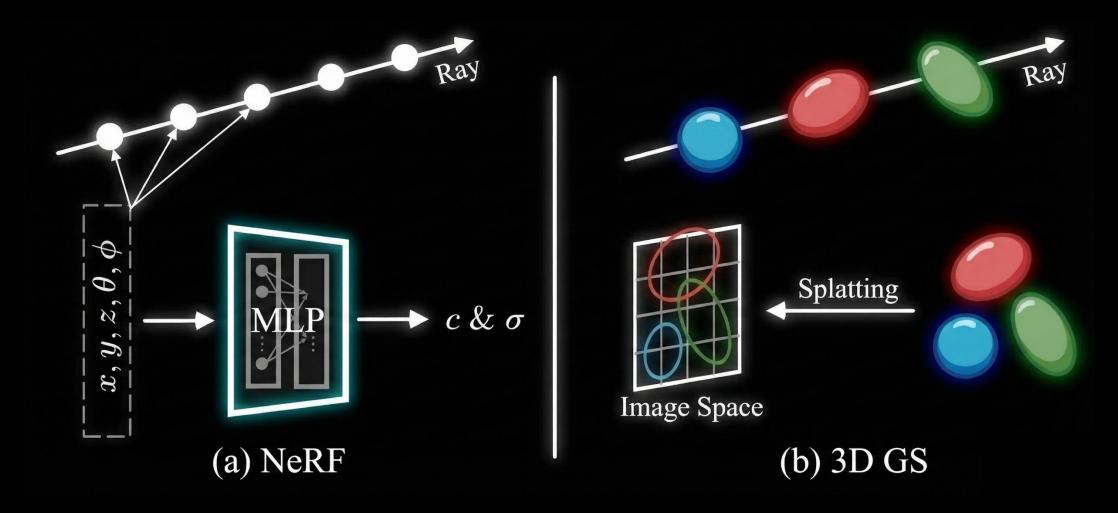
3D Scene Generation

SceneWeaver (NeurIPS'25)
Best Paper, RoboGen@IROS25

4D Gaussians for Dynamic Reconstruction

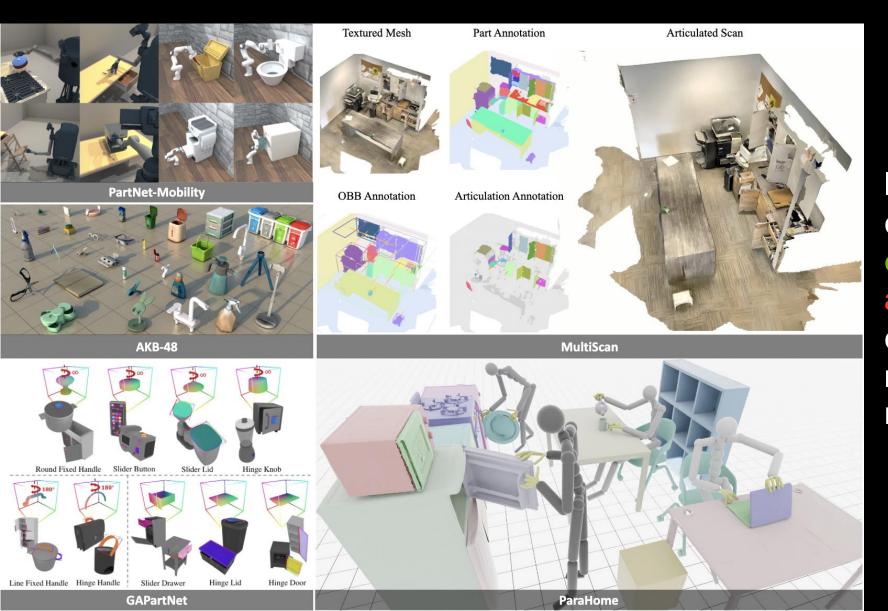
- (ICLR'25) Building Interactable Replicas of Complex Articulated Objects via Gaussian Splatting
- (ArXiv'25) VideoArtGS: Building Digital Twins of Articulated Objects from Monocular Video

Static 3D Scene Reconstruction



Learn 3D by projecting to multiple views as supervision

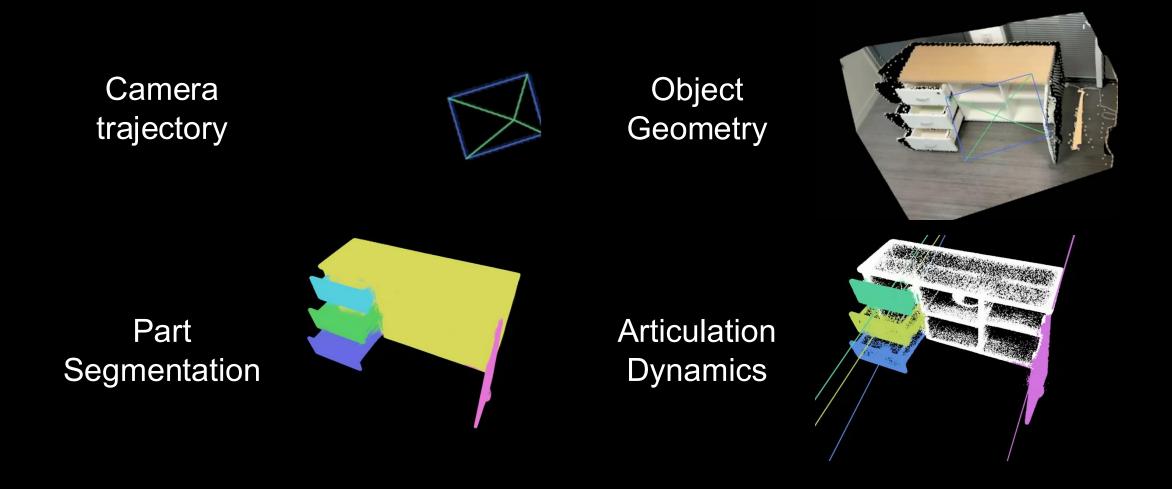
Manipulation Involves Dynamic Objects



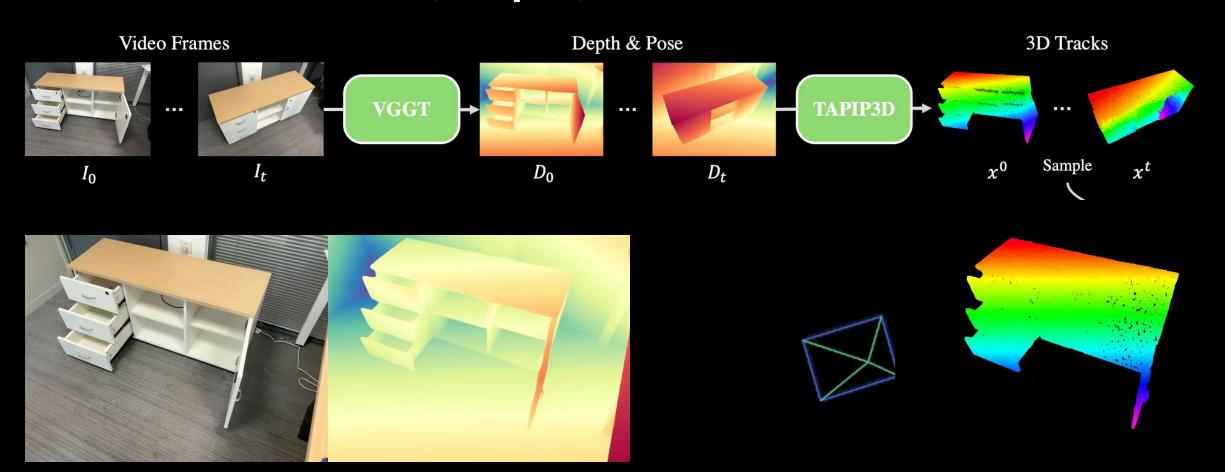
In reality, we deal with dynamic, articulated objects whose geometry and shape change during interaction, making them difficult to reconstruct

Image Supervision is Ambiguous for Articulation Learning

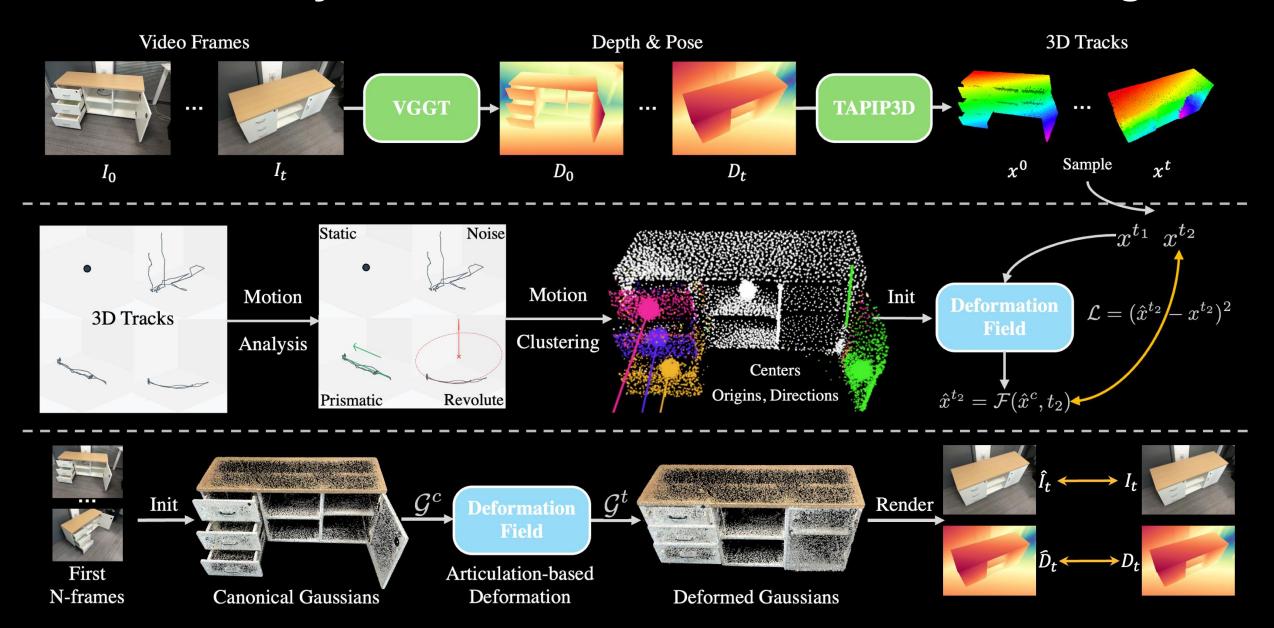
Key Challenge: The observed pixel motion results from four entangled factors:



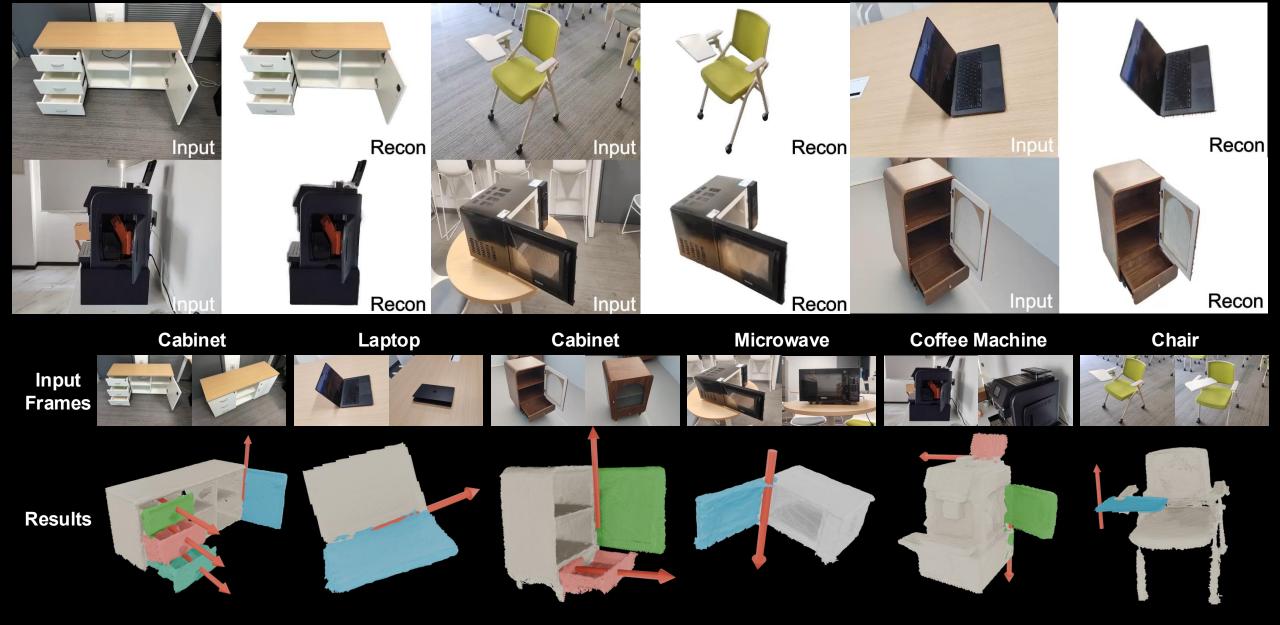
Camera, Depth, Tracks Estimation



Geometry Reconstruction & Articulation Learning



Real-world Experiments



Limitations & Takeaways

- Difficult to scale-up
 - **❖** Feed-forward reconstruction
 - Active camera trajectory selection
- > Limited quality for simulation
 - Physical priors (e.g. plane) during reconstruction
 - Existing assets and generative models as guidance for reconstruction
 - System vs. Model?

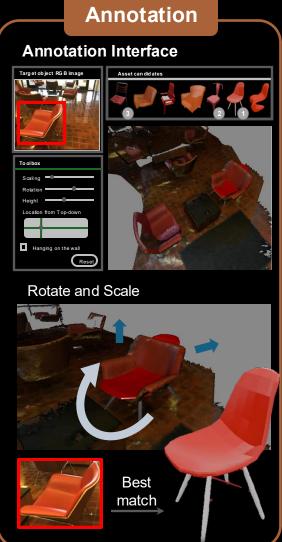
ArtGS: Building Interactable Replication of Complex Articulated Objects via Gaussian Splatting

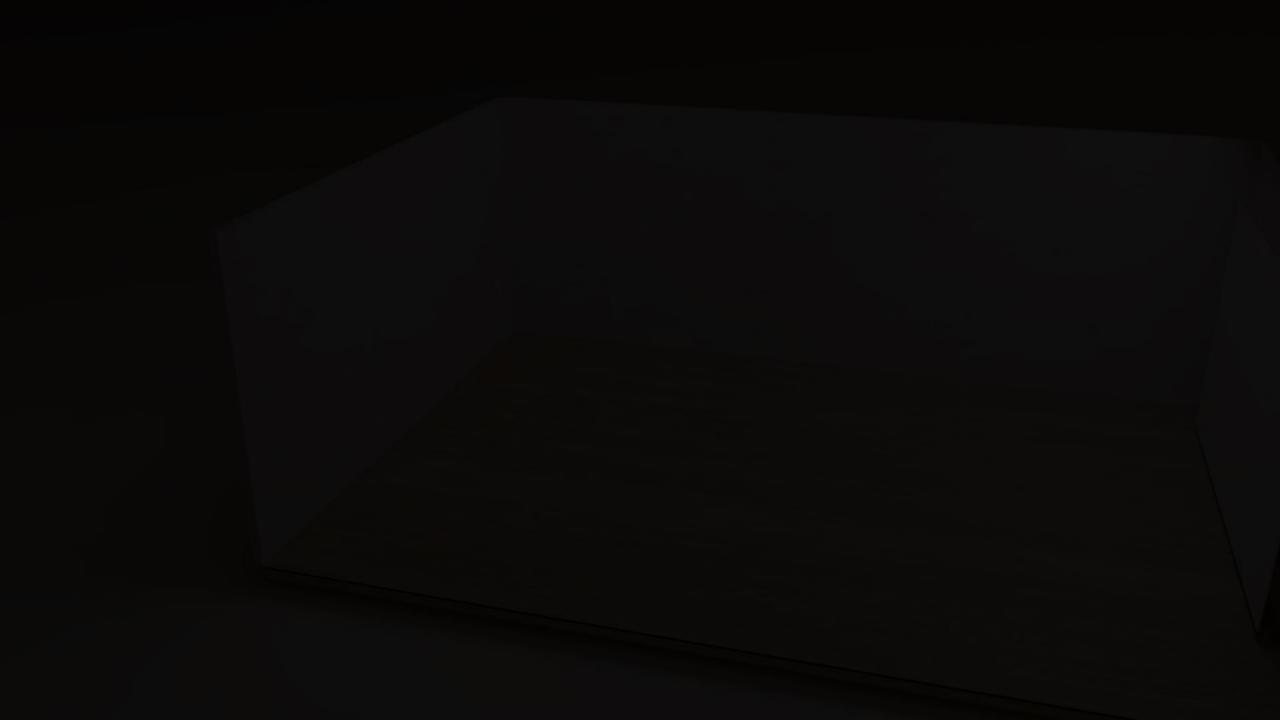
Digital Cousin Creation with 3D AIGC

(CVPR'25) MetaScenes: Towards Automated Replica Creation for Real-World 3D Scans

<u>MetaScenes</u>

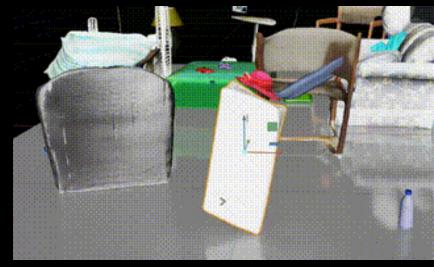
Leveraging AIGC & Online Assets for Digital Twin Creation





Limitations & Takeaways

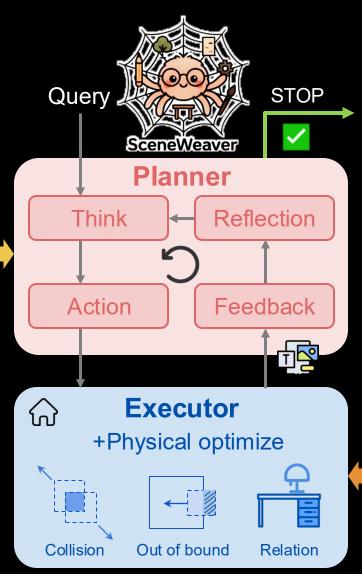
- Unstable generation quality
 - Physical-based post-optimization
 - Better 3D generative models (e.g. SAM3D)
- > Sequential error in the pipeline
 - **❖** Better orchestration of tools
 - Iterative refinement of the generated results?



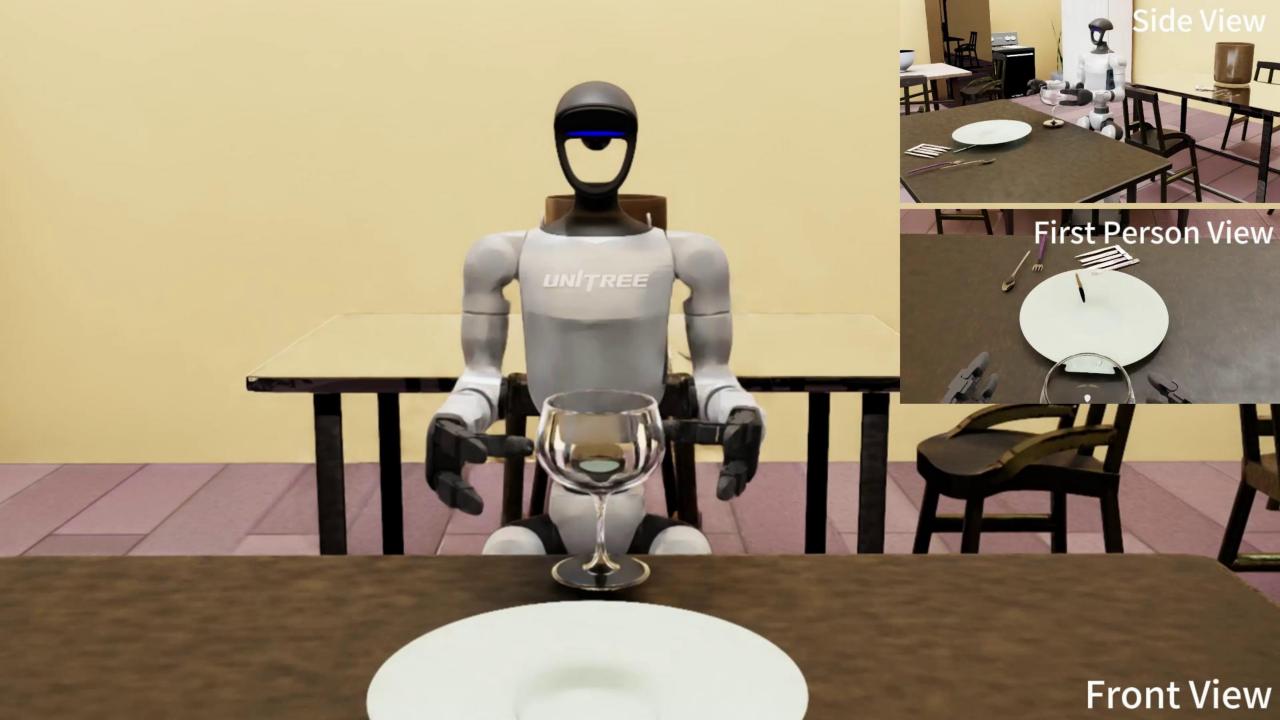
Agentic Tool-Use for 3D Scene Generation

(NeurIPS'25) SceneWeaver: All-in-One 3D synthesi with an Extensible and Self-Reflective Agent (Best Paper, RoboGen@IROS'25)

SceneWeaver



Final Scene



Training Generalist Policies

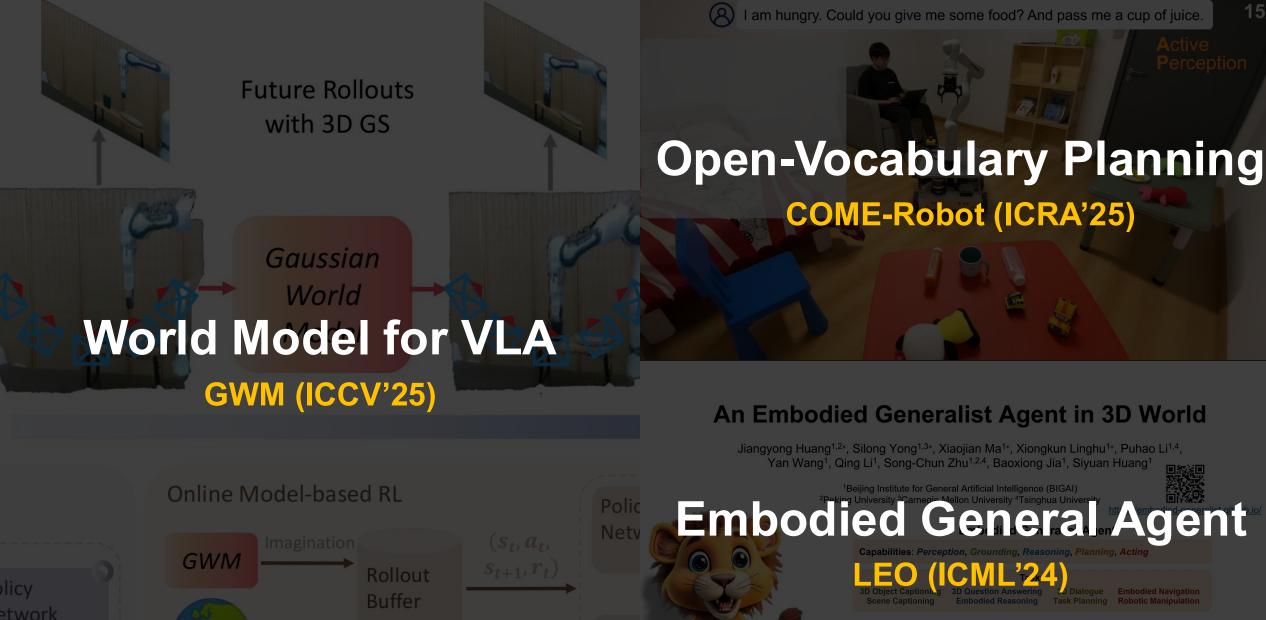
- Leveraging large-scale pre-trained VLMs
- Pre-trained with large-scale data
- Still limited generalizability on tasks and embodiments

Adapting to Your Specific Scene

- Rolling out "almost" successful trajectories but hard to improve
- Can only afford few-shot demonstrations
- Sensitive to capturing modalities and viewpoints

Goal of Reasoning and Planning

- Capable of finishing diverse tasks according to instructions
- Enable spatial understanding for existing VLMs for better backbones
- Efficient representation for effective learning from high-cost data



Net

3D World

Open-Vocabulary Mobile Manipulation

(ICRA'25) Closed-Loop Open-Vocabulary Mobile Manipulation with GPT-4V

Come-Robot

LLM-based Closed-Loop Open-Vocabulary Manipulation

I am thirsty. Put a cup into the plate, I will pour water into it.

Vision Language Model GPT-4V

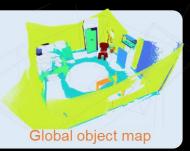
Active Perception

Reason:

I need to perform a global exploration to identify the table.

Code:

global object map = robot.explore global())



Reason:

I find two tables. I will navigate to the first table to start a local search for cups and plate.

Code:

robot.navigate to(table 0) table object map = robot.explore local()

→ Situated Commonsense Reasoning

Reason:

The table contains two cups. I will observe both cups to confirm which is suitable.

Code:

robot.report observation(cup 0) robot.report observation(cup 1)

Reason:

The image shows that cup 0 is not empty and cup 1 is empty and suitable for the task.

Code:

robot.grasp(cup 1) robot.report observation('stay')

Try grasping

Recover From Failure

Reason:

The image shows the cup is not in the robot's gripper. I will attempt to grasp cup 1 again.

Code:

robot.grasp(cup 1) robot.report_observation('stay') Grasp succeeded

Reason: This image shows the cup is in the robot's gripper. I will place the cup into the plate.

Code:

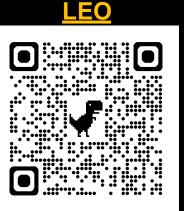
robot.place(plate 0) robot.report observation('stay')

Place succeeded

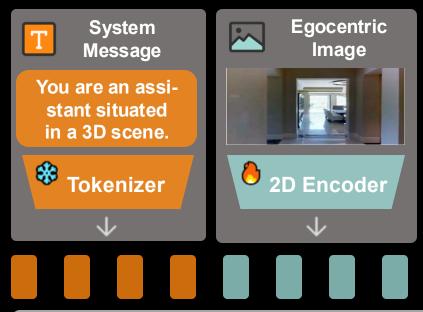
Problem? No learning, just inference

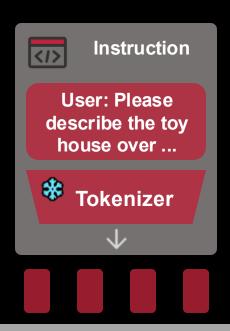
Improving Spatial Understanding for VLAs

- (ICML'24) LEO: An Embodied Generalist Agent in 3D World
- (ArXiv'25) LEO-VL: Efficient Scene Representation for Scalable 3D Vision-Language Learning



Vision-Language-Action Models





Large Language Model

 $\mathsf{LoRA} \color{red} oldsymbol{\delta}$

Text Response

There is a sofa next to the TV.

It's a kitchen for cooking.

Action Response

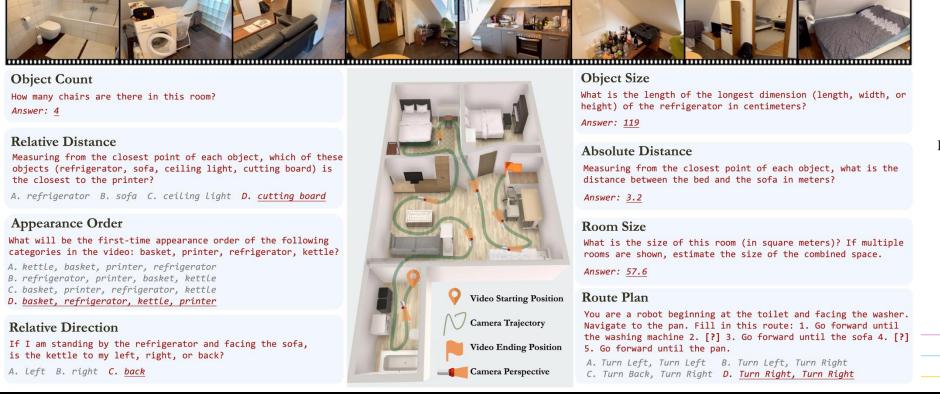
$$P = [0.1, -0.2, 0]$$

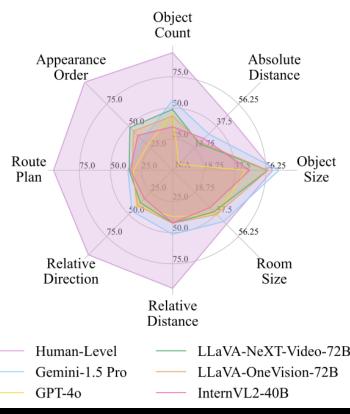
 $R = [0, 0, 0, 1]$

"Tuarn right"

Can 2D MLLMs Understand 3D Scenes?

VSI-Bench (CVPR 2025)





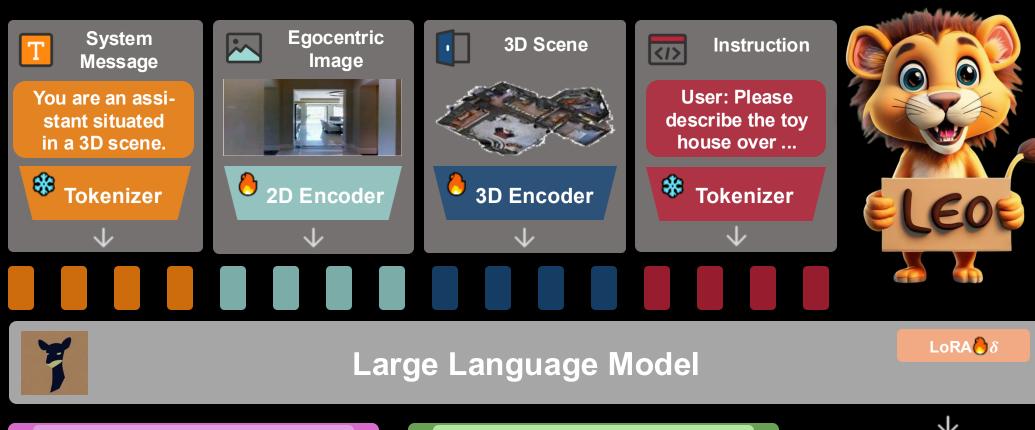
Despite powerful understanding of images and videos, current 2D MLLMs significantly lag far behind humans in 3D scene understanding, especially spatial reasoning.

Real Deployment?



Depth is a problem, but normally not equipped and used by VLAs

Vision-Language-Action Models



Text Response

There is a sofa next to the TV.

It's a kitchen for cooking.

Action Response

P = [0.1, -0.2, 0]R = [0, 0, 0, 1]

"Tuarn right"

An Embodied Generalist Agent in 3D World

Jiangyong Huang^{1,2*}, Silong Yong^{1,3*}, Xiaojian Ma^{1*}, Xiongkun Linghu^{1*}, Puhao Li^{1,4}, Yan Wang¹, Qing Li¹, Song-Chun Zhu^{1,2,4}, Baoxiong Jia¹, Siyuan Huang¹

¹Beijing Institute for General Artificial Intelligence (BIGAI)

²Peking University ³Carnegie Mellon University ⁴Tsinghua University

https://embodied-generalist.github.io/

Embodied Generalist Agent

Capabilities: Perception, Grounding, Reasoning, Planning, Acting

Tasks

3D Object Captioning Scene Captioning

3D Question Answering Embodied Reasoning 3D Dialogue Task Planning

Embodied Navigation Robotic Manipulation

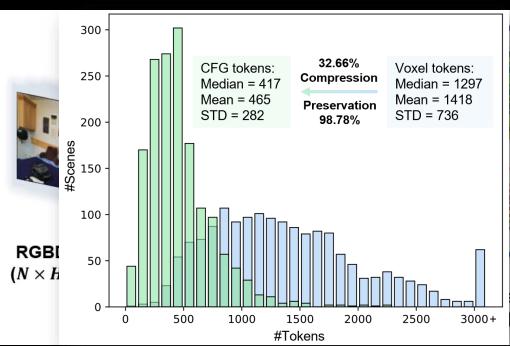
3D World

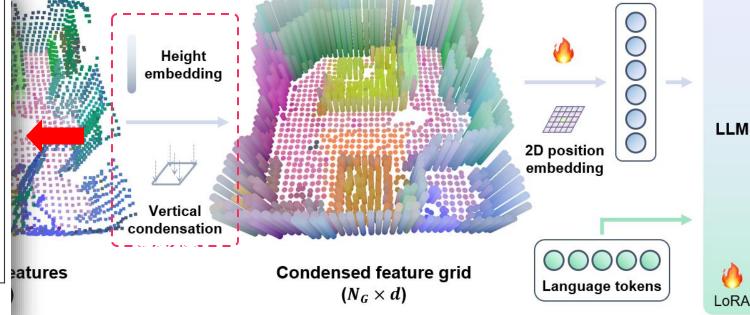
Efficient Representation Bridging 2D-3D Perception

Pros Cons **Complex pre-processing** pipelines, learning difficulty **Significant computation**

Explicit 3D structure 3D perception

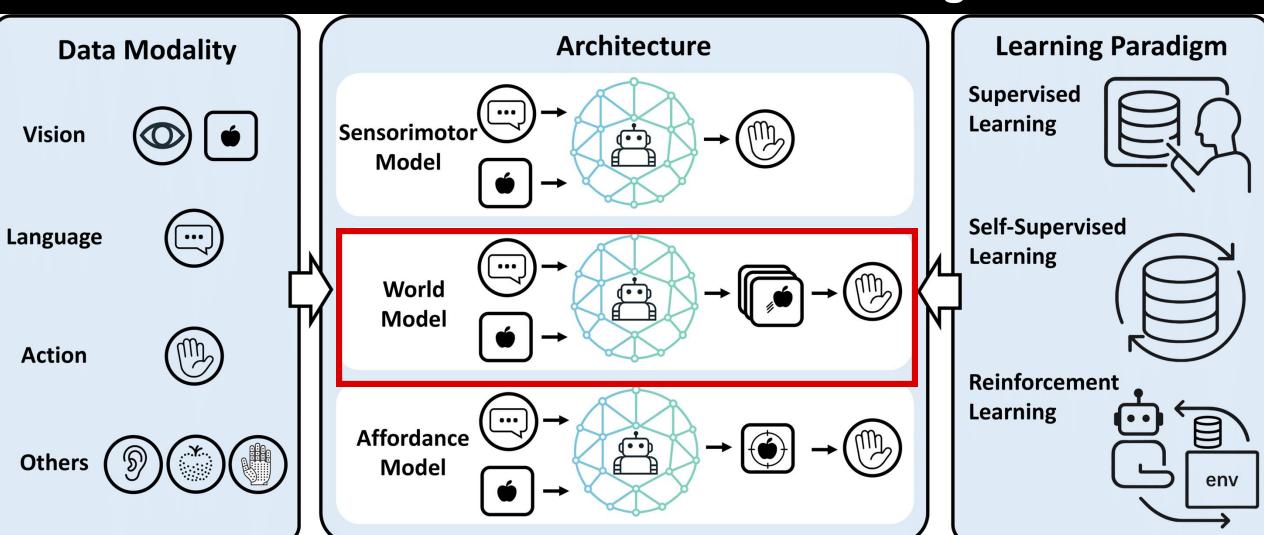
Strong capability 2D perception





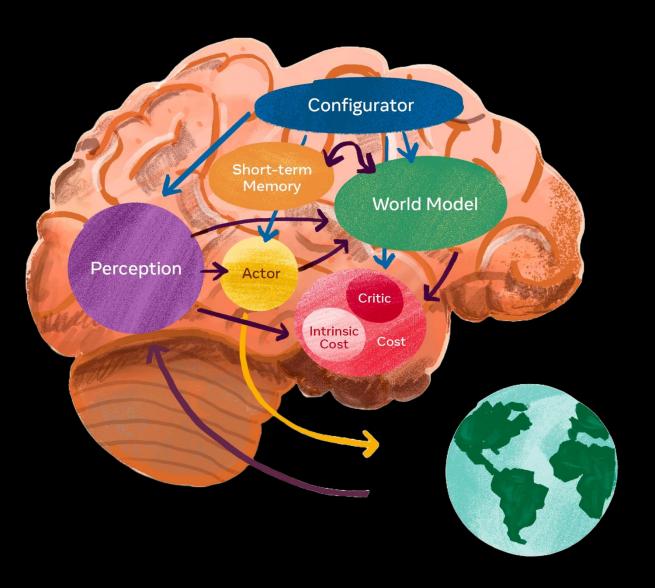
overhead (thousands of tokens)

A Closer Look at VLA Model Design



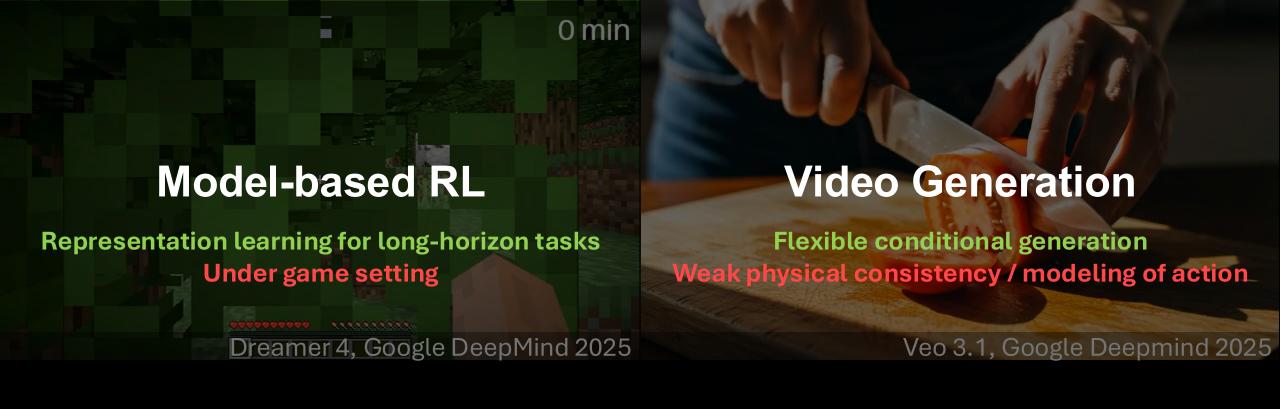
Vision-Language-Action Models for Robotics (IEEE Access 2025)

World Models



"If the organism carries a small-scale model of external reality and of its own possible actions within its head, it is able to try out various alternatives, conclude which is the best of them, react to future situations before they arise, utilize the knowledge of past events in dealing with the present and future."

— Kenneth Craik (1943)



Latent Action Learning

Aligning video generation with latent actions Limited by the view-point

Spatial Representations

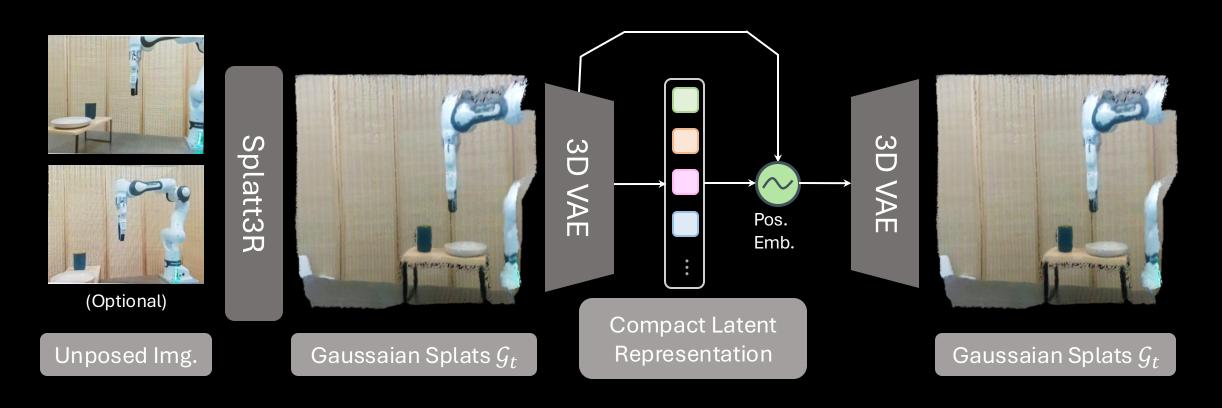
World modeling with 3D Gaussians Interactiveness for robot manipulation?

Scalable World Modeling with 3D Gaussians

(ICCV'25) GWM: Towards Scalable Gaussian World Modeling for Robotic Manipulation

<u>GWM</u>

Encoding 3D Gaussians into Latent Space

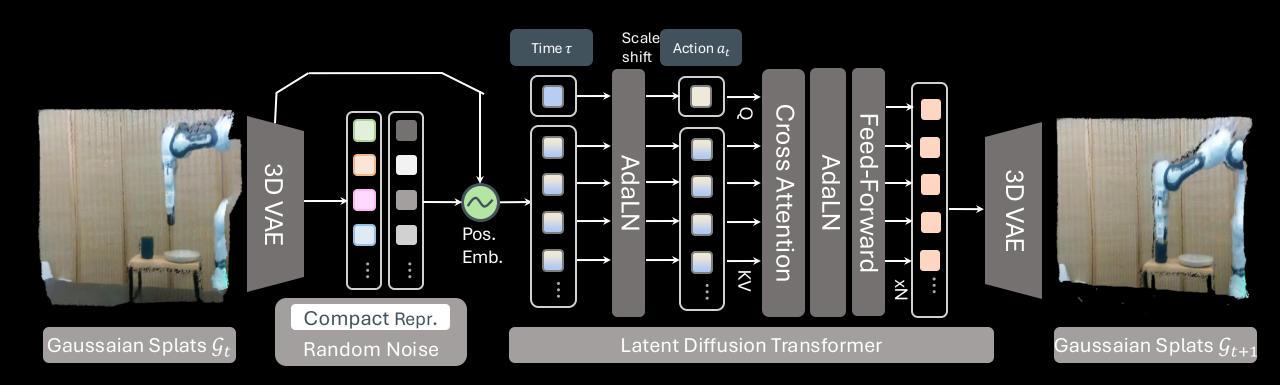


Feed-Forward 3D
Gaussian Reconstruction

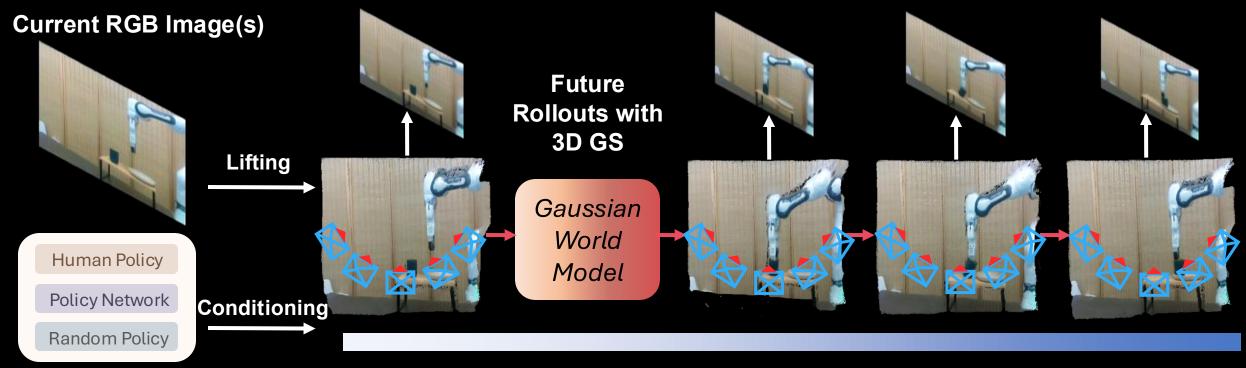
FPS-based Subsampling Query-based Encoding

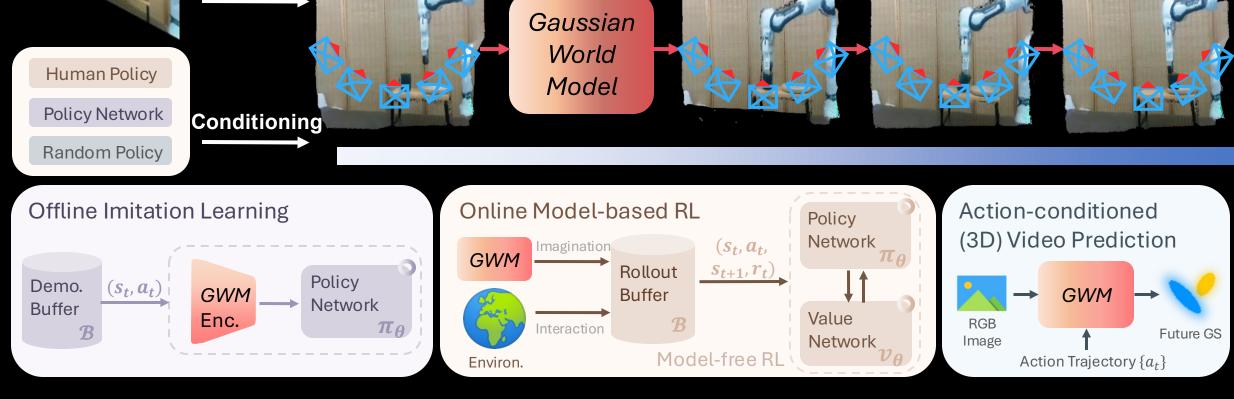
Rendering / Geometry
Supervision

GWM: Gaussian World Model

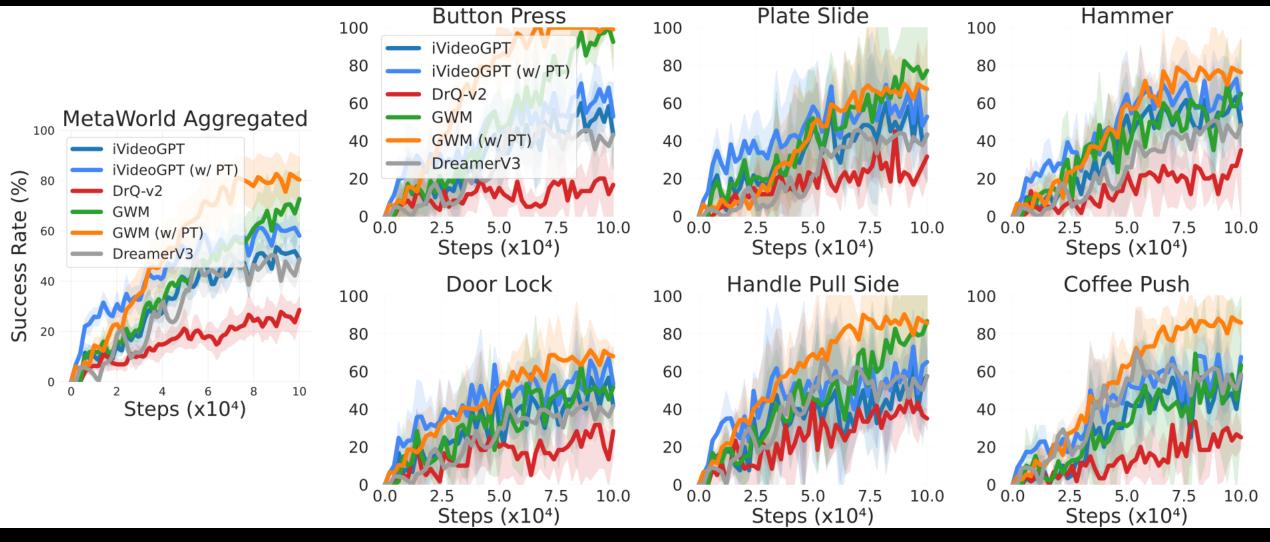


DiT-based Dynamics Learning and Prediction





GWM for Online Model-based RL



Additional reward learning on top of GWM for online RL

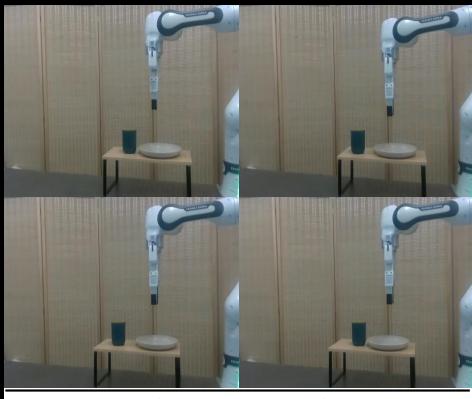
GWM for Real-World Robot Manipulation



Diffusion Policy

DP w/ GWM

Comparsion



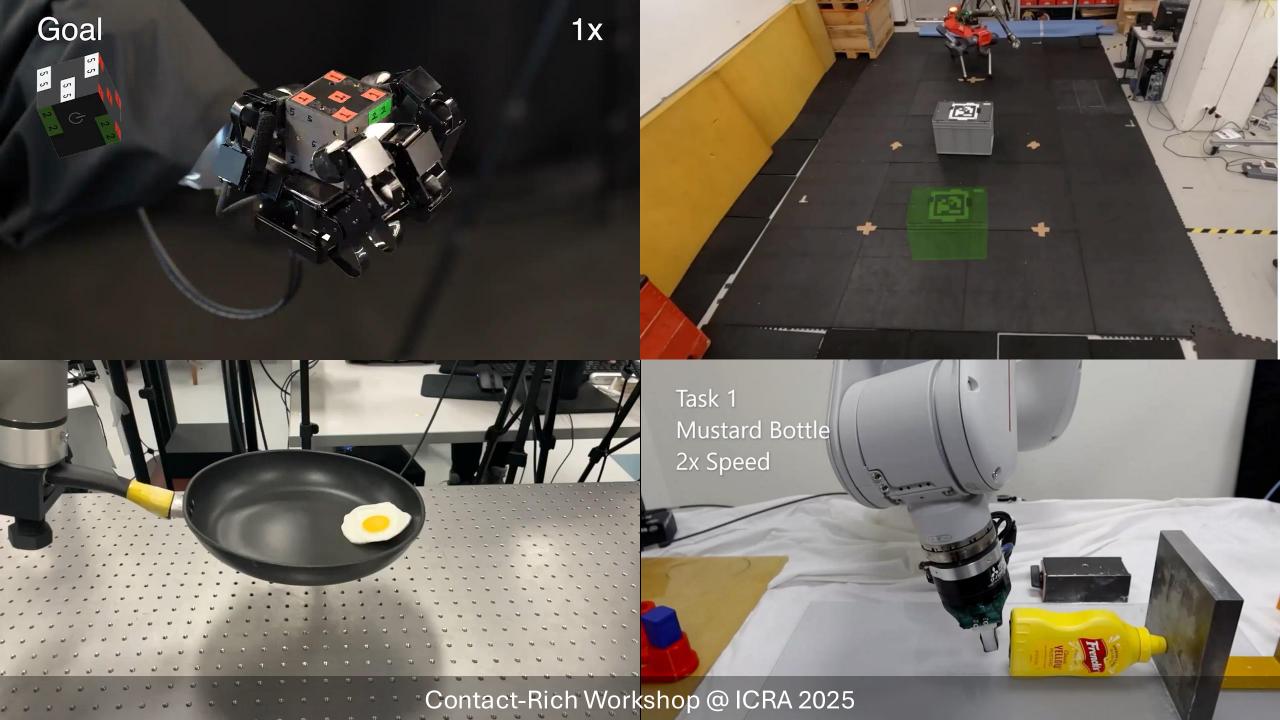
FRANKA-PNP	Diffusion Policy	GWM (Ours)
Cup distractor Plate distractor Table distractor	6/10 $1/5$ $0/5$	$7/10 \ 3/5 \ 3/5$
Total	7/20	13/20

Can Humanoids Interact at This Level?

Humans effortlessly squat to retrieve objects from the ground and then walk to another distant place.

Enable holistic and long-horizon humanoid-scene interaction

Whole-body demonstrations is significantly limited

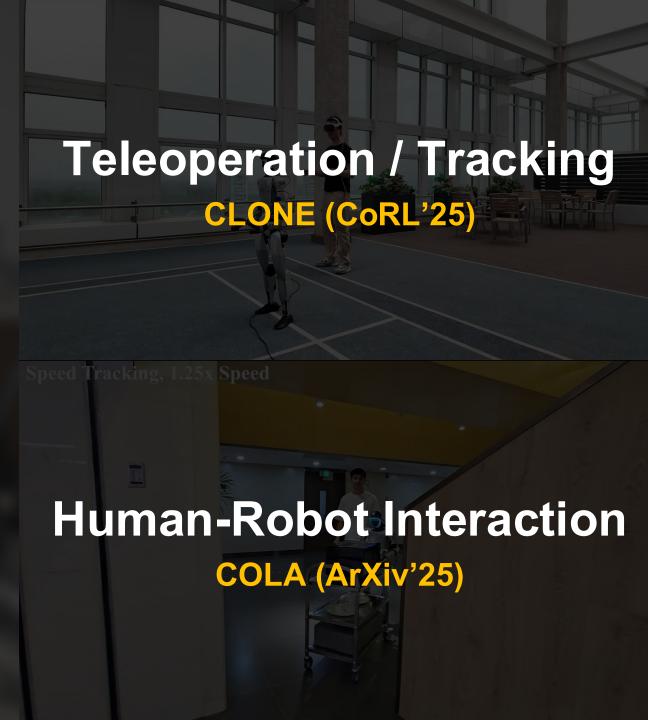


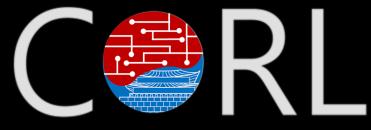
Goal of Action and Control

- Enable agile and stable whole-body control for humanoid robots
- Mitigate the missing force modality for contactrich manipulation tasks
- Safe and helpful human-robot collaboration patterns

Force-Aware Manipulation

UniFP (CoRL'25)
Best Paper





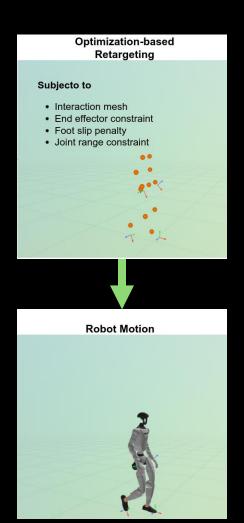
Agile Humanoid Whole-Body Teleoperation

(CoRL'25) CLONE: Closed-Loop Whole-Body Humanoid Teleoperation for Long-Horizon Tasks

CLONE

Driving a Physical Humanoid with Human Motion

MoCap



Humanoid Controller

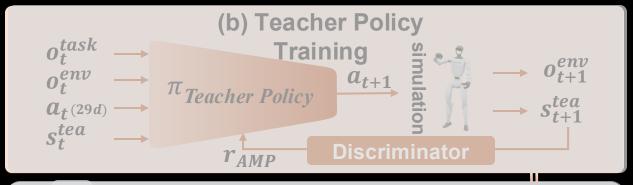
MLP MoE Transformer PID MPC

Human Motion

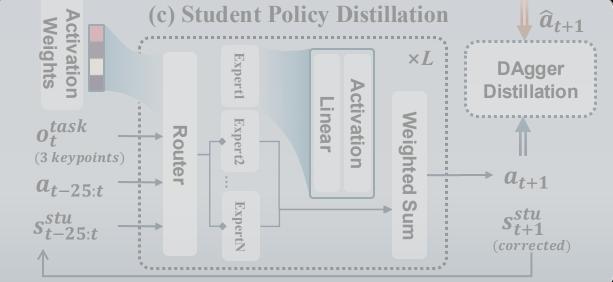
LAFAN Motion Retargeting

Controller Robot Execution

CLONE: Humanoid Whole-Body Teleoperation



Learning a teacher policy with privileged information for human motion tracking



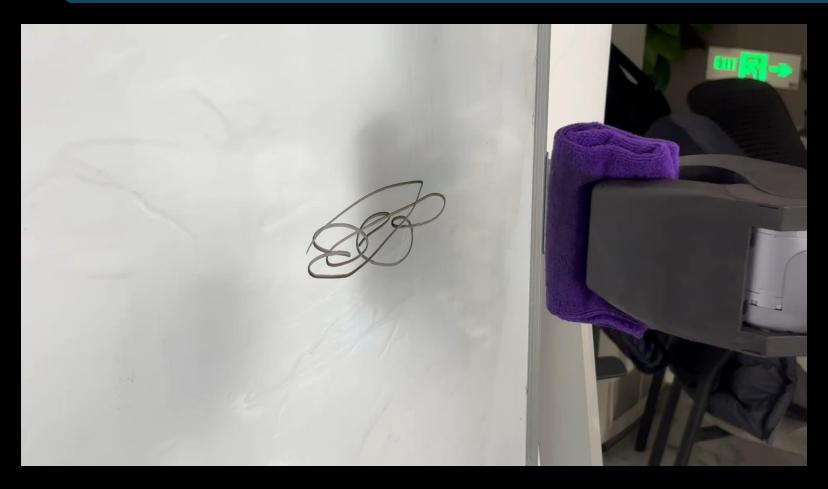
Distilling a MoE-based student policy with Behavior Cloning (Dagger)

CLONE

Holistic Closed-Loop Whole-Body
Humanoid Teleoperation for Long-Horizon Tasks

OK, can we let the robot help us wipe the whiteboard first after meeting?

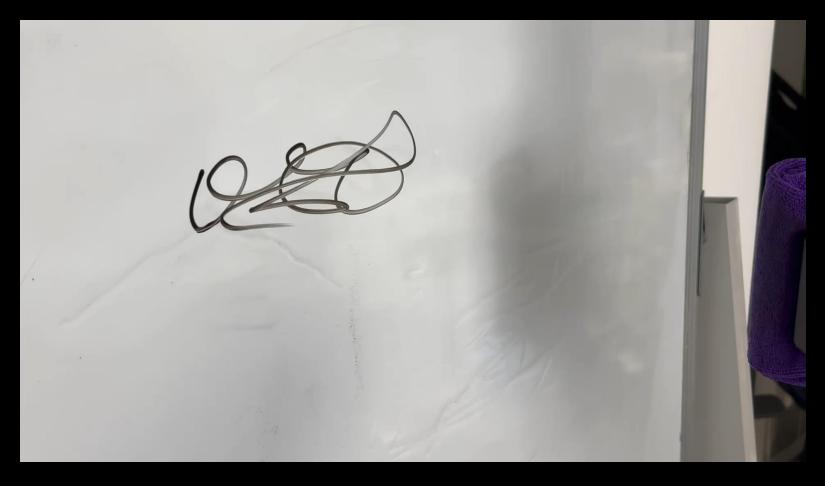
Let me collect the data and imitation learning will solve the rest ©



Data collection is a disaster

OK, can we let the robot help us wipe the whiteboard first after meeting?

Let me collect the data and imitation learning will solve the rest ©



Of course, the learned policy failed no matter how much data used 🙈

Unified Force-Position Control Policy

(CoRL'25 Best Paper) Learning a Unified Policy for Position and Force Control in Legged Loco-Manipulation

Revisiting the control formulation

mass-spring-damper system

$$F = K(x - x^{cmd}) + D(\dot{x} - \dot{x}^{cmd}) + M(\ddot{x} - \ddot{x}^{cmd})$$

$$x = x^{cmd} + \frac{F}{K}$$

And if the end effector moves really slowly...

Revisiting the control formulation

mass-spring-damper system

$$F = K(x - x^{cmd}) + D(\dot{x} - \dot{x}^{cmd}) + M(\ddot{x} - \ddot{x}^{cmd})$$

$$x = x^{cmd} + \frac{F}{K}$$

Force can be estimated via position offsets!

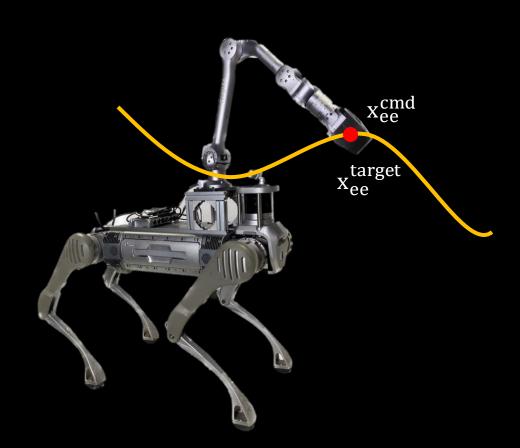
Tracking the force-adjusted position enables joint force-position control.

Formulating forces with positions

$$\mathbf{F} = K(\mathbf{x} - \mathbf{x}^{\mathrm{cmd}})$$

Position control

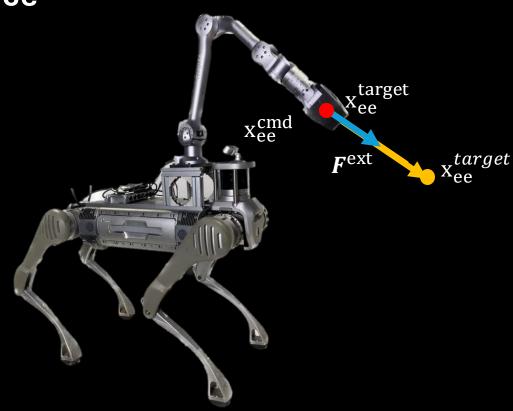
$$x^{\text{target}} = x^{\text{cmd}}$$



Formulating forces with positions

$$\mathbf{F} = K(\mathbf{x} - \mathbf{x}^{\mathrm{cmd}})$$

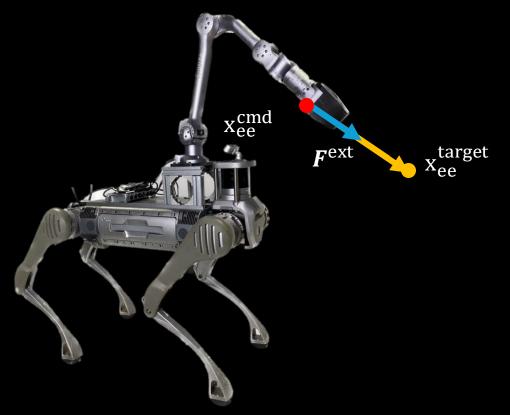
When with external force

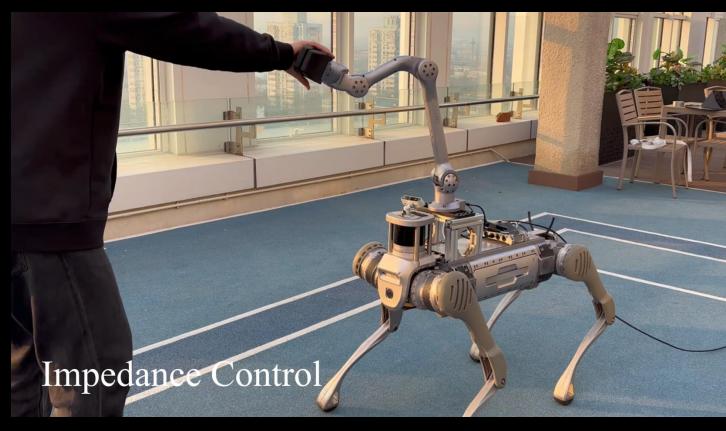


Formulating forces with positions

$$\mathbf{F} = K(\mathbf{x} - \mathbf{x}^{\mathrm{cmd}})$$

Impedance control
$$x^{\text{target}} = x^{\text{cmd}} + \frac{F^{\text{ext}}}{K}$$





Revisiting the control formulation

mass-spring-damper system

$$F = K(x - x^{end}) + D(\dot{x} - \dot{x}^{end}) + M(\ddot{x} - \ddot{x}^{end})$$

And if we care about the locomotion

Revisiting the control formulation

mass-spring-damper system

$$F = K(x - x^{\text{end}}) + D(\dot{x} - \dot{x}^{\text{cmd}}) + M(\ddot{x} - \ddot{x}^{\text{end}})$$

$$\dot{\mathbf{x}} = \dot{\mathbf{x}}^{\mathrm{cmd}} + \frac{F}{D}$$

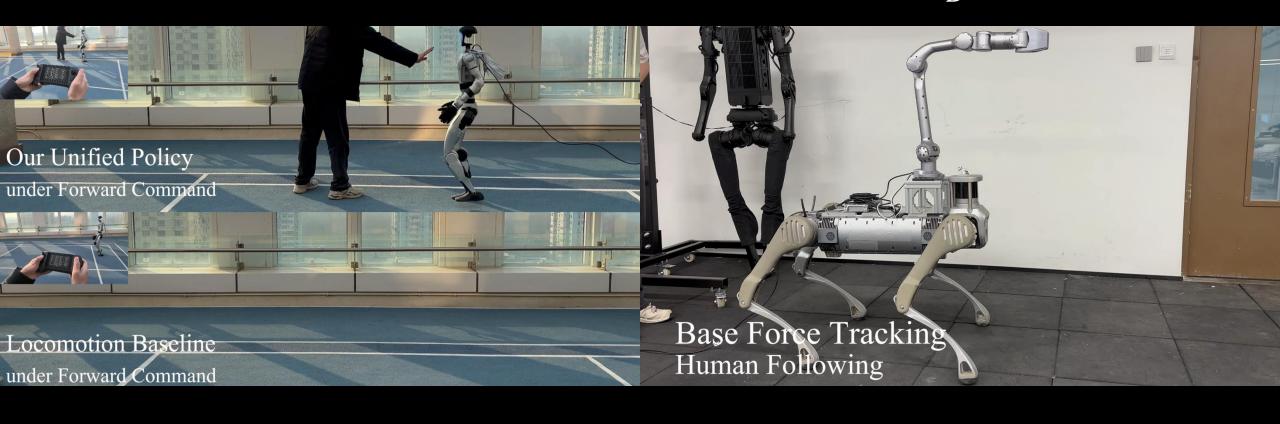
Force-adjusted velocity enables compliant locomotion

Formulating forces with velocities

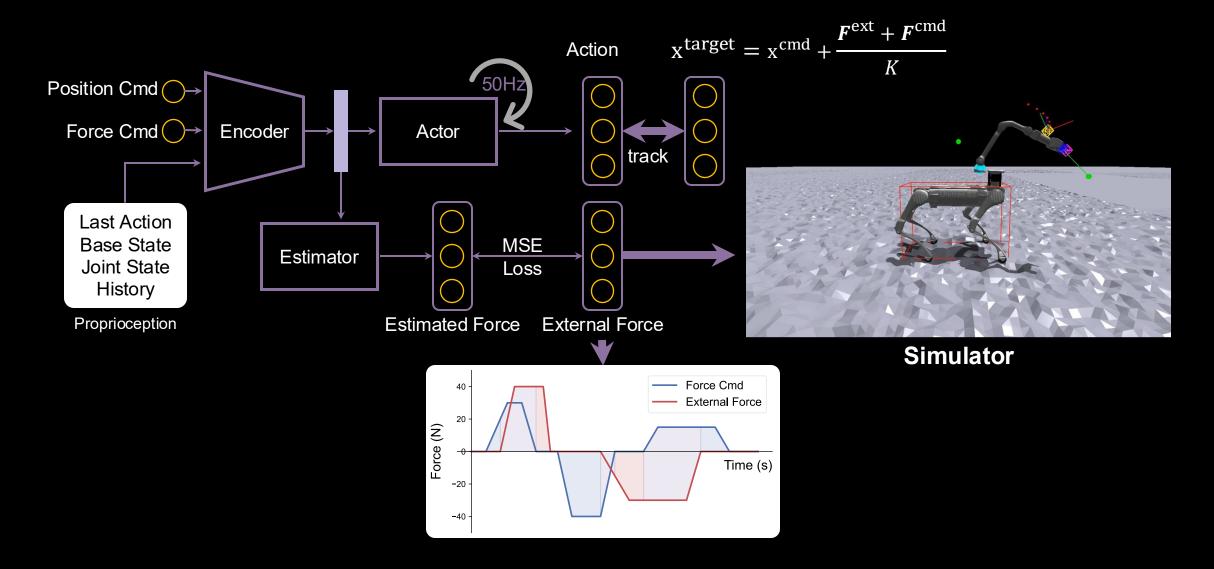
$$\mathbf{F} = D(\dot{\mathbf{x}} - \dot{\mathbf{x}}^{\mathrm{cmd}})$$

Compliant locomotion

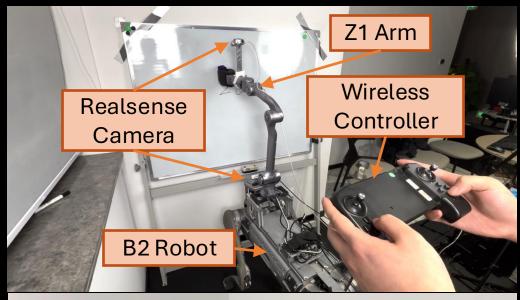
$$\dot{\mathbf{x}}^{\text{target}} = \dot{\mathbf{x}}^{\text{cmd}} + \frac{F^{\text{ext}}}{D}$$



UniFP via RL with force-position sampling in simulator



UniFP for force-aware real-world imitation learning



- Data collection with estimated forces
- Imitation learning with position and force command targets
- Inference with UniFP

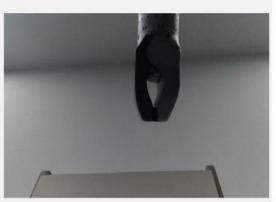
UniFP for force-aware real-world imitation learning

Tested on 4 tasks with each task taking 50 demonstrations

UniFP for force-aware real-world imitation learning

Table A.3: Imitation learning results (50 trials per task)				
Task	wipe-blackboard	open-cabinet	close-cabinet	open-drawer-occlusion
w/o Force w/ Force	0.22 0.58	0.36 0.70	0.30 0.72	0.30 0.76

Base Camera View



Achieves ~39.5% higher success rate than the vanilla DP policy

So how is this important...

Movement Tracking

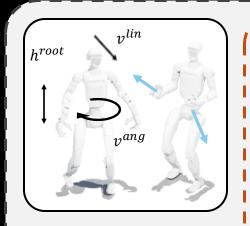
Compliant Holding

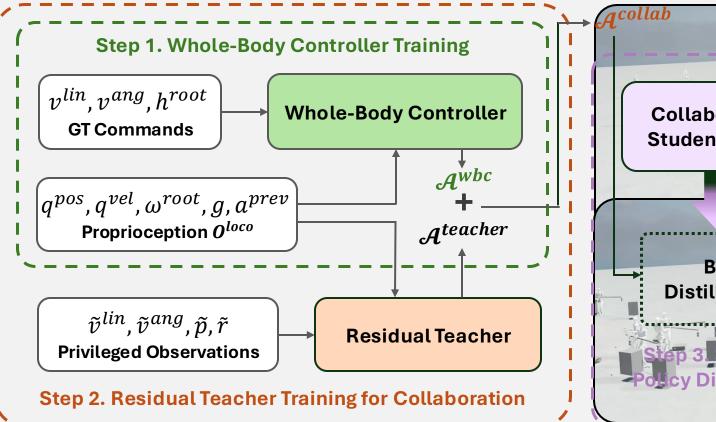
The composition of these behaviors works for human-robot collaboration

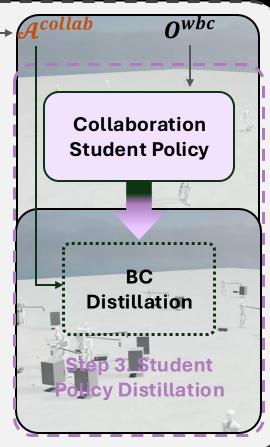


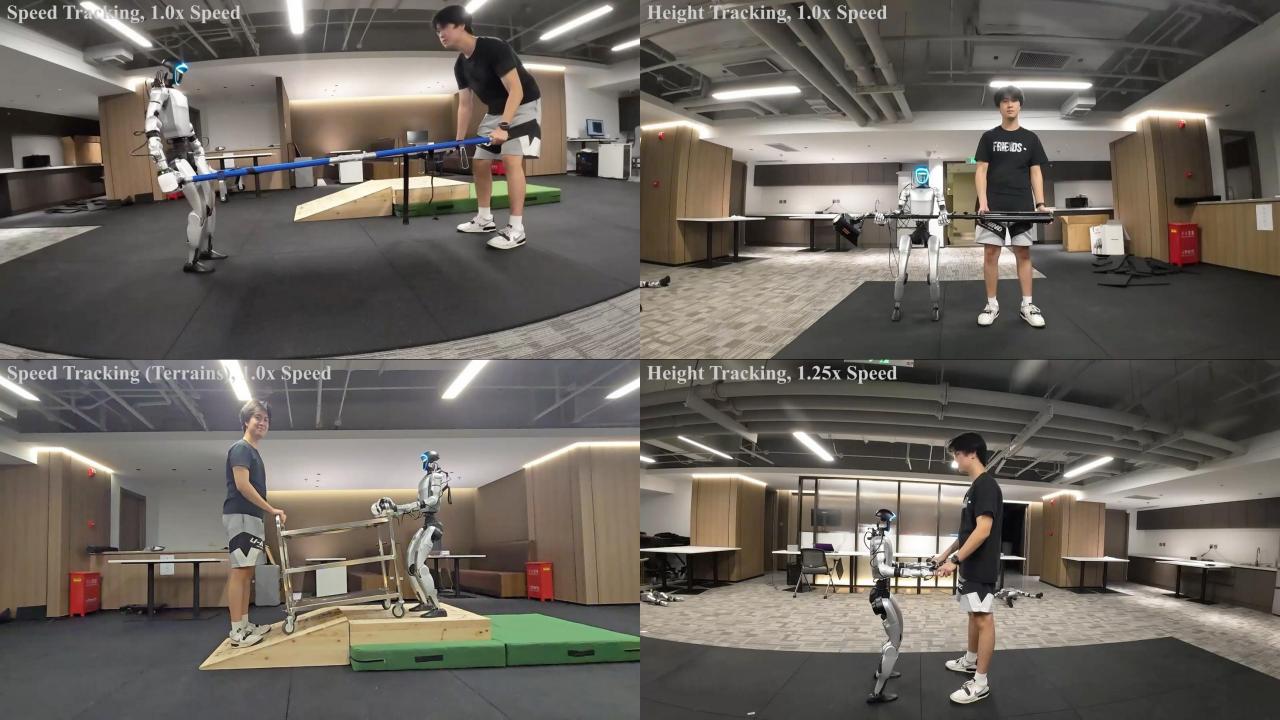
COLA for collaborative object carrying

External Forces









Summary & Takeaways

- > Data scaling and unification as the main obstacle of EAI
 - Different embodiments, low-cost hardwares
 - * Real2Sim2Real, synthetic augmentation, world models etc.

Summary & Takeaways

- > Data scaling and unification as the main obstacle of EAI
 - Different embodiments, low-cost hardwares
 - * Real2Sim2Real, synthetic augmentation, world models etc.
- > General reasoning and acting capabilities for robot tasks
 - * Aligning MLLMs for planning and interaction, efficient representations
 - Injecting spatial understanding capabilities for VLA models

Summary & Takeaways

- > Data scaling and unification as the main obstacle of EAI
 - Different embodiments, low-cost hardwares
 - * Real2Sim2Real, synthetic augmentation, world models etc.
- > General reasoning and acting capabilities for robot tasks
 - * Aligning MLLMs for planning and interaction, efficient representations
 - Injecting spatial understanding capabilities for VLA models
- > Agile and safe robot control for human-robot interaction
 - * Recover the missing force modality for compliance policies
 - Safe control behaviors over VLA for human-robot interaction

