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Embodied Al

“The embodiment hypothesis is the idea that intelligence emerges in the interaction
of an agent with an environment and as a result of sensorimotor activity”

Smith & Gasser, The Development of Embodied Cognition: Six Lessons from Babies, 2005

Manipulation & Locomotion Interaction with scenes in daily life

Various object attributes and diverse scene
RL / Imitation learning / MPC on specific configurations
scenes or skills
Long-horizon interaction with scenes

Walk, Run, Crawl, RL Fun | Boston Dynamics | Atlas, 2025 Damen et al., Scaling Egocentric Vision: The Epic-Kitchens
https.//www.youtube.com/watch?v=144 zbEwz w Dataset, 2018
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What we learned previously

Data Data Data !!!

* ImageNet —» Image Understanding

» Million scale images

« GPT — Language modeling
e Billion scale texts

« CLIP — Multi-modal alignment
« Billion scale image-text pairs

« GPT-4V - More modalities
* Unknown huge size (?)
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NVIDIA, What are foundation models, 2023

Tasks

Question
Answering ‘
. Sentiment
'VJ Analysis
Information
Extraction

Image f
Captioning

aRecognition

Instruction
Following .. .

https://blogs.nvidia.com/blog/what-are-foundation-models/
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Data for robotics?
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Open-X-Embodiment (O'Neill et al., 2024) Bridge Data V2 (Walke et al., 2023)
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Ag|Bot World Colosseo (Angot, 2025) Droid (Khazatsky et al., 2024)
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How to close the gap between generalist and
scene specific tasks?



Scalable Generation of Synthetic Scenes

PhyScene: Physically Interactable 3D Scene Synthesis for Embodied Al
CVPR 2024

General Vision Lab, BIGAI April 11, 2025 8
4 QL



Synthetic Scenes to the Rescue?

O Collisions between
objects

O Objects outside of
floor plan

O Areas unreachable
to agents

Fu et al., 3D-FRONT: 3D Furnished Rooms with layOuts and semaNTics, ICCV 2021
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Yang et al., PhyScene: Physically Interactable 3D Scene Synthesis for Embodied Al, CVPR 2024 (Highlight)




PhyScene
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Limitations

Not enough scale / diversity
* No small objects

 Limited articulated objects

« Three room types available

» Limited scale (thousands)
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Bringing Real Scenes into Simulation

MetaScenes: Towards Automated Replica Creation for Real-world 3D Scans
CVPR 2025
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MetaScenes creation

Scene PCD Multiview Images

A wooden bar stool.

Color: Brown
Texture: Wooden
Shape: Strip

_ Rigid body
Mass: 5.0 kg

Text-to-3D retrieval Text/Image-to-3D generation

nana AATEE

Texture optimization
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MetaScenes creation

Annotation

Multiview Images Annotation Interface

Target object RGB image Asset candidates

S(_:_en’g D

Toolbox
Scaling =@
Rotation .
Height .
Location from Top-down
A wooden bar stool. e
Color: Brown
Texture: Wooden Rotate and Scale
Shape: Strip
Rigid body
Mass: 5.0 kg

Text/Image-to-3D generation

nana AATEE

Texture optimization

Text-to-3D retrieval
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MetaScenes creation

Multiview Images

Annotation

Annotation Interface

A wooden bar stool.

Color: Brown
Texture: Wooden
Shape: Strip
Rigid body
Mass: 5.0 kg

Rotation °

Height °
Location from Top-down

_+_

Hanging on the wall

Reset

l

Text-to-3D retrieval Text/Image-to-3D generation

nnna AATEL

Texture optimization
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Optimization

Physical optimization

Outside Floating Collision

SSG & MCMC Optimization




MetaScenes for EAI

Table 5. Cross-domain embodied navigation. METASCENES
improves generalization in unseen real scenes.
Benchmark Data Source SR(%)t EL|  Curvature| SELT SPL?

Real-wrld

In-domain ProcTHOR [13] 52.43 25.34 0.38 50.00 43.81
Scenes METASCENES 58.00 23.40 0.17 55.00 51.39
Both 59.07 22.78 0.21 55.94 52.28
Heldout ProcTHOR [13] 51.21 25.73 0.33 48.43 43.82
METASCENES 52.64 25.57 0.14 49.62 45.55
UP AGV Scenes
Both 51.36 25.58 0.22 48.33 4478
Scan scene Heldoyt ~ PrOCTHOR[I3] 4533 28.56 0.38 4290 37.58
Domailrlls METASCENES 50.67 26.56 0.25 47.78 44.33

Both 46.67 26.95 0.27 43.43 4151

Table A4. Comparison on VLN experiments with HSSD

Benchmark Data Source SR(%)1 EL| Curvature| SELT SPL?t
10 scenes from HSSD 27.00 33.77 0.39 26.7T 23.32
Replica CAD  METASCENES 32.00 4371 0.46 3156 2651
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Discussion

Physical Plausibility
» Reconstructed / Generated objects
* Precise locations and physics

* Require additional manual post-optimization

Interactability

» Missing articulated objects

» Largely depending on available asset libraries

« Currently only for navigation, and potentially for
pick & place

General Vision Lab, BIGAI April 11, 2025 20
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Reconstruction of Interactable Objects

Building Interactable Replicas of Complex Articulated Objects via Gaussian Splatting
ICLR 2025
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Articulated objects




Articulated object reconstruction
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Problem formulation

Render _

Articulation gO State O

Model

State 1
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Key challenges

Simultaneous optimization of many correlating variables via rendering
« Canonical Gaussians (base geometry)

» Object part identification (part movement identification)

» Dynamics modeling over Gaussians (articulation parameters)

General Vision Lab, BIGAI
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ArtGS

Multi-view RGB-D

Stage 1: Stage 2:
Obtain Coarse Canonical Gaussians Jointly Optimize Canonical Gaussians and Articulation Model
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Results

LAA AR )
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State 0 State 1
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Results

DTA

Ours

GT
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ArtGS: Building Interactable Replicas
of Complex Articulated Objects
via Gaussian Splatting



Discussion

Problem Setting
» The two-state setting causes confusion
« Initialization is key to success

» Requires high-quality recording of objects |

Future?

* From static captures to videos

« Leveraging pre-trained models (e.g. SAM) W

» Feed-forward reconstruction without per-

object optimization

General Vision Lab, BIGAI
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Input Image

(a) Init. Cano.

(b) M - Init. Cano.

Case 2

(e) Init. Cano.

(c) Opt. Cano.

(d) M — Opt. Cano.
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Physical Plausible Scene Reconstruction

Decompositional Neural Scene Reconstruction with Generative Diffusion Prior

CVPR 2025
PhyRecon: Physically Plausible Neural Scene Reconstruction

NeurlPS 2024
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Physically plausible scene reconstruction

Monocular Cues Previous Method

t=0

In Isaac Gym

Final state

April 11, 2025
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Physically plausible scene reconstruction

Monocular Cues Previous Method

In Isaac Gym

video t=0 Final state

PHYRECON In Isaac Gym

e —

Physical Simulator

* A

Final state

video t=0 Final state

Ni et al., PhyRecon: Physically Plausible Neural Scene Reconstruction, NeurlPS 2024
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PhyRecon
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Enough?

* In regions scarcely observed in the input image, objects tend to grow protrusions
under the influence of physical loss, maintaining stability but distorting the shape.

Image Image View New View

&@‘ General Vision Lab, BIGAI April 11, 2025
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Leveraging diffusion prior

* Object-compositional Reconstruction: Optimize the SDF for each object in the scene.
+ Geometry Optimization: Incorporate a text-guided geometry prior.

« Appearance Optimization: Incorporate a text-guided appearance prior.

Object-compositional Reconstruction Geometry Optimization Appearance Optimization
Text Embedding

b
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Text Embedding
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Object
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E Mesh
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Visibility Grid Visibility Map Visibility Grid Visibility Map

Ni et al., Decompositional Neural Scene Reconstruction with Generative Diffusion Prior, CVPR 2025
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DP-Recon

for game
(Replica by |0-views)




Interaction with Scenes
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® | am hungry. Could you give me some food? And pass me a cup of juice. 15x

— N ,
=0 Active

Perception

COME-Robot, ICRA 2025



COME-Robot, ICRA 2025




Overall

From the Real2Sim perspective

Asset substitution with physical optimization can give pretty good static scenes

Reconstruction of scenes and interactable objects are starting to work

EAI tasks like vision-language navigation can already be tested on these scenes

Need more efficient and high-quality scene/object reconstructions for manipulation
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More to come from BIGAI

[=]
iy CVPR 3

= oR(BP—

https://meta-scenes.github.io

ICLR

International Conference On
Learning Representations

https://dp-recon.github.io

https://articulate-gs.github.io

Thank you!
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