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Loco-Manipulation, Boston Dynamics 2025
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COME-Robot (Zhi et al., ICRA 2025)
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'@' OK, can we let the robot help us wipe the whiteboard first after meeting?

Let me collect the data and imitation learning will solve the rest ©

Data collectionis a disaster



l@ OK, can we let the robot help us wipe the whiteboard first after meeting?

Let me collect the data and imitation learning will solve the rest ©

Of course, the learned policy failed no matter how much data used ®



@ OK, can we let the robot help us wipe the whiteboard first after meeting?
Let me collect the data and imitation learning will solve the rest ©

Wiping blackboards is a contact-rich problem, simply scaling data does
not work. It requires simultaneous position and force modeling. @

How difficult can that be, learning it’s not rocket science G
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@ OK, can we let the robot help us wipe the whiteboard first after meeting?
Let me collect the data and imitation learning will solve the rest ©

Wiping blackboards is a contact-rich problem, simply scaling data does

not work. It requires simultaneous position and force modeling. @
How difficult can that be, learning it’s not rocket science G
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Typically, you can’t model the contact without . @



Learning force-aware policies

Adaptive Compliance Policy (Hou et al., ICRA 2025) Reactive Diffusion Policy (Xue et al., RSS 2025)

Force sensing is critical for reactive behaviors



@ OK, can we let the robot help us wipe the whiteboard first after meeting?

Let me collect the data and imitation learning will solve the rest ©

Wiping blackboards is a contact-rich problem, simply scaling data does
not work. It requires simultaneous position and force modeling. @

How difficult can that be, legged robots are already skyrocketing # G

Typically, you can’t model the contact without . @
Mounting them on our robots is somewhat , and it
also requires for joint force and position control. @

That’s not equipped on legged robots, at least not what we have. GG o

'@' OK, then why don’t we learn a unified policy for legged robots
that jointly models force and position control without relying

on force sensors.




Learning a Unified Policy for Position and Force Control
iIn Legged Loco-Manipulation




Revisiting the control formulation

mass-spring-damper system

F = K(x — [x™9) + D(x ~«™9) + M(% —x

X =Xcmd+£
K

And if the end effector moves really slowly...



Revisiting the control formulation
mass-spring-damper system
F=K(x — x™9) 4+ D(3 —%M4) + M(§ —%Md)

X =Xcmd+£
K

Force can be estimated via position offsets!
Tracking the force-adjusted position enables joint force-position control.



Formulating forces with positions

F = K(x — xcmd)

Position control

xtarget — ycmd




Formulating forces with positions

F = K(x — xcmd)
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Formulating forces with positions

Impedance control  ytarget — ycmd 4 _
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Formulating forces with positions

F = K(x — xcmd)

Fext
Force tracking xtarget — yemd 4
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When applying a force?
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Actively applying a force is obtaining the reaction force of the same value



Formulating forces with positions
F = K(x — xcmd)

When applying a force

Fcmd
xtarget — ycmd (




Formulating forces with positions

F = K(x — xcmd)

(chd _Freact) d (chd _Freact)
Force control x@r8et = xcmd 4 p o xeme = xomd 4 p
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Formulating forces with positions

F = K(x — xcmd)
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Z
SRS |

o - \‘]l' ‘i..ﬁﬁ‘“f;( ‘
i @)/

eV

o




Revisiting the control formulation
mass-spring-damper system

F = K(x =x“M9) 4+ D(x — xMm4) + M(§ —%Md)

And if we care about the locomotion



Revisiting the control formulation
mass-spring-damper system
F = K(x =x“M9) 4+ D(x — xMm4) + M(§ —%Md)

§ = gemd 4 =

D

Force-adjusted velocity enables compliant locomotion



Formulating forces with velocities

F=D(x — x™md)

. . Fext
Compliant locomotion gtarget — gcmd 4 _
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K'P via RL with force-position sampling in simulator

Fext + chd
Action Xtarget — Xcmd +
K
Position Cmd Q-» 50Hz ’O‘ ’O‘
Force Cme—> Encoder — Actor O <= O
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Joint State Estimator 1O Loss O
History O O
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Proprioception Estimated Force External Force

Simulator

Force Cmd
External Force




K'P via RL with force-position sampling in simulator

Force Visualization Force Visualization

701 x-force estimate
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Can successfully apply the force and estimate the reaction force ©




UniKP for force-aware real-world imitation learning
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 Data collection with estimated forces

* Imitation learning with position and
force command targets

 Inference with UniFP




UniKP for force-aware real-world imitation learning
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Tested on 4 tasks with each task taking 50 demonstrations



K'P for force-aware real-world imitation learning

Table A.3: Imitation learning results (S0 trials per task)

Task wipe-blackboard open-cabinet close-cabinet open-drawer-occlusion

w/o Force 0.22 0.36 0.30 0.30
w/ Force 0.58 0.70 0.72 0.76

Base Camera View

Achieves ~39.5% higher success rate than the vanilla DP policy









Limitations

» Precise sensing/estimation and application of force
¢ Incorporating robot kinematics for more accurate force modeling



Limitations

L 4
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» Support of different control/compliant behaviors during on
more diverse and dexterous manipulation tasks

*+* More powerful hierarchical VLA with force-aware low-level policy



Limitations

» Mainly tested on separate control behaviors without
consideration of nested behaviors in real-world scenarios

*+* The formulation enables such composition but requires careful
design on position commands, force commands, compensation...



So how is this important...
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COLA for collaborative object carrying

External Forces

vlm’ vang, hroot

GT Commands
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Student Policy
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Speed Tracking, 1.0x Speed



LE:LCEWEVE

> Offsets between commands and actual robot status
entails force and interaction information ©
¢+ Precision and accuracy still needs to be improved ®



LE:LCEWEVE

» Compliant behaviors are important in human-robot
collaboration especially for safety considerations ©

¢ Coordination with vision inputs are necessary ®



LE:LCEWEVE

» Unified policies can help VLA-type learning ©
¢ Autonomy only on certain tasks, need task specific tuning ©



Thank you
Q&A
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